EUDAQ User Manual

R~ R - -

\

EUDAQ Software User Manual

EUDAQ Development Team

As of 8th March 2017
for EUDAQ version v1.6.0+8 gd143f93

This document provides an overview of the EUDAQ software, the data
acquisition framework used by the EUDET JRA1 beam telescope. It describes
how to install and run the DAQ system and use many of the included utility
programs, and how users may integrate their systems into the EUDAQ
framework by writing their own Producer and DataConverterPlugin, thus
allowing them to take advantage of the EUTelescope analysis framework.

EUDAQ User Manual Contents

Contents
1. License 4
2. Introduction 5
2.1. Architecture 5
2.2. Directory Structure 6
3. Installing EUDAQ 8
3.1, Overview 8
3.2, CMake o 8
3.3. C++11 compliant compiler 8
3.4. Downloading the source code 10
3.5. Configuring via CMake oo 10
3.6. Compilation on Linux/OSX 12
3.7. Setup and Compilation on Windows using Visual Studio 12
4. Running EUDAQ 14
4.1. Preparation 14
4.2. Processes 15
4.3. Running the DAQ 20
4.4. Other Utilities 22
5. Writing a Producer 33
5.1. Configuration 33
5.2. Receiving Commandso 33
5.3. Sending Data and the RawDataEvent class 34
5.4. Log Messages 36
5.5. Interfacing Python-Code via the PyProducer Interface 36
6. Data Conversion 37
6.1. StandardEvent and StandardPlane 37
6.2. LCIO and LCEvent 41
6.3. DataConverterPlugin 0L 42
7. Other Parts of the Framework 44
7.1. FileWriter 44
7.2. FileReader 44
7.3. PluginManager 45
7.4. OptionParser 46
7.5, Timer 49
7.6. Utils o 49
8. Reporting Issues 51
9. Developing and Contributing to EUDAQ 52
9.1. Regression Testing o 52
9.2. Commiting Code to the Main Repository 52

EUDAQ User Manual Contents

A. Source Code 54
A.1. Example Config File, 54
A.2. Example Producer 55
A.3. Example DataConverterPlugin 59
A4. Example Reader 65

B. Introduction to the build system and project files on Windows 67
B.1. MSBUILD 67
B.2. Project Files 67
B.3. Known Problems 70

C. Online Monitor Configuration Settings 71
C.1. Configuration Sections Overview 71
C.2. Configuration options in [General] 71
C.3. Configuration options in [Correlations] 71
C.4. Configuration options in [Clusterizer| 71
C.5. Configuration options in [HotPixelFinder] 71
C.6. Configuration options in [Mimosa26] 71
C.7. Configuration Example o0 72

Glossary 73

EUDAQ User Manual 1. License

1. License

This program is free software: you can redistribute it and/or modify it under the terms
of the Lesser GNU General Public License as published by the Free Software Foundation,
either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the Lesser GNU General Public License for more
details.

You should have received a copy of the Lesser GNU General Public License along with
this program. If not, see http://www.gnu.org/licenses/.

http://www.gnu.org/licenses/

EUDAQ User Manual 2. Introduction

2. Introduction

The EUDAQ software is a data acquisition framework, written in C++, and designed to
be modular and portable, running on Linux, Mac OS X, and Windows. It was written
primarily to run the EUDET Pixel Telescope[l], but is designed to also be generally
useful for other systems.

The hardware-specific parts are kept separate from the rest, so that the common parts
can still be used independently. These include software for accessing the trigger logic
unit (TLU) and the the EUDET data reduction board (EUDRB) used by the EUDET
beam telescope.

The data files generated by the DAQ can be easily converted to the Linear Collider
I/O (LCIO) format, allowing the data to be analysed with the EUTelescope|[2] analysis
package.

2.1. Architecture

It is split into a number of different processes (see Figure 1), each communicating using
TCP sockets. A central Run Control provides an interface for controlling the whole DAQ
system; other processes connect to the Run Control to receive commands and to report
their status.

Key:

Application

Buffer

M

read éignal Data Collector
/data {

-—
Storage
; Monitor]
;»Listenin ,"'
— Socket & b
Command * ’ Data elver d deiver Re elvj

Logging

Producer
ware Cm
iv ‘ }
povor ﬂ Logger
Server
Run Control
Hardware deiver deiver
der l
<

Figure 1: Schematic of the DAQ architecture.

EUDAQ User Manual 2. Introduction

Each piece of hardware that produces data (e.g. the TLU, the telescope, or a device
under test (DUT)) will have a Producer process. This will configure the hardware, read
out the data and send it to the Data Collector.

The Data Collector receives all the data streams from all the Producers, and combines
them into a single stream that is written to disk. It usually writes the data in a native
raw binary format, but it can be configured to write in other formats, such as LCIO.
The Logger receives log messages from all other processes, and displays them to the user,
as well as writing them all to file. This allows for easier debugging, since all log messages
are stored together in a central location.

A Monitor reads the data file and generates online-monitoring plots for display. In the
schematic it is shown to communicate with the DataCollector via a socket, but it actually
just reads the data file from disk (this may be changed in the future).

2.2. Directory Structure

The EUDAQ software is split into several parts that can each be compiled independently,
and are kept in separate subdirectories. The general structure is outlined below:

e main contains the main EUDAQ library with the parts that are common to most of
the software, and several command-line programs that depend only on this library.
All definitions in the library should be inside the eudaq namespace. It is organised
into the following subdirectories:

— 1ib/src contains the library source code,

— exe/src contains the (command line) executables source code,

— include contains the header files inside the eudaq subdirectory (to match the
namespace),

e gui contains the graphical programs that are built with Qt, such as the RunControl
and LogCollector.

e producers contains all (user-provided) producers shipped with the EUDAQ distri-
bution, for example:

— tlu and eudrb contain the parts that depend on the TLU and EUDRB
respectively.

— vme contains a wrapper for the VME driver for the EUDRB.

— depfet, fortis, taki... contain the code for third-party producers that have
been used with the telescope.

e extern stores external software that is not part of EUDAQ itself, but that is needed
by EUDAQ in some cases, such as the ZestSC1 driver for the TLU and the Tsil48
VME driver.

e bin and 1ib contain the compiled binaries (executables and libraries) generated
from the other directories.

e conf contains configuration files for running the beam telescope.

EUDAQ User Manual 2. Introduction

e data and logs are directories for storing the data and log files generated while
running the DAQ.

e doc contains documentation, such as this manual.

Each directory containing code has its own src and include subdirectories, as well as a
local CMakeLists.txt file containing the rules for building that directory using CMake.
Header files usually have a .hh extension so that they can be automatically recognised
as C++ (as opposed to C), and source files have either .cc for parts of a library or .cxx
for executables.

EUDAQ User Manual 3. Installing EUDAQ

3. Installing EUDAQ

3.1. Overview

EUDAQ has relatively few dependencies on other software, but some features do rely
on other packages. To configure the EUDAQ build process, the CMake cross-platform,
open-source build system is used. To compile EUDAQ from source code requires a
compiler that implements the C++11 standard. The libusb library is only needed to
communicate over USB with a TLU[3]. The VME driver is only needed for reading out
EUDRBsJ4] via VME with a Motorola MVME6100 single board computer. The other
dependencies are only needed for running the DAQ, and not for the common library (for

example if you only want to perform data analysis, or write a custom Producer to run in
the EUDET telescope, but not run the whole DAQ yourself).

3.2. CMake

In order to automatically generate configuration files for the build process of EUDAQ
both compiler and platform independent, the CMake build system is used.

CMake is available for all major operating systems from http://www.cmake.org/cmake/
resources/software.html. On most Linux distributions, it can usually be installed via
the built-in package manager (aptitude/apt-get/yum etc.) and on OSX using packages
provided by e.g. the MacPorts or Fink projects.

3.3. C++411 compliant compiler

The compilation of the EUDAQ source code requires a C+-+11 compliant compiler and
has been tested with GCC (at least version 4.6), Clang (at least version 3.1), and MSVC
(Visual Studio 2012 and later) on Linux, OS X and Windows.

If you are using Scientific Linux, please install the Developer Toolset available e.g. from
http://linux.web.cern.ch/linux/devtoolset/ to get access to a GCC version which
fully implements C+-+11.

3.3.1. libusb

In order to communicate with a TLU, the libusb library is needed. Therefore, if you want
to compile the TLU subdirectory, you should make sure that libusb is properly installed.
On Mac OS X, this can be installed using Fink or MacPorts. If using MacPorts you may
also need to install the libusb-compat package. On Linux it may already be installed,
otherwise you should use the built-in package manager to install it. Make sure to get the
development version, which may be named 1ibusb-devel instead of simply libusb. On
Windows, libusb is only needed if compiling with cygwin, in which case you should use
the cygwin installer to install libusb. Otherwise libusb is not needed, as the included
ZestSC1 libraries should work as they are.

http://www.cmake.org/cmake/resources/software.html
http://www.cmake.org/cmake/resources/software.html
http://linux.web.cern.ch/linux/devtoolset/

EUDAQ User Manual 3. Installing EUDAQ

3.3.2. ZestSC1 drivers and TLU firmware files

Additonally to the libusb library, the TLU producer requires the ZestSC1 driver package

and the FPGA firmware bitfiles; these are available to download via AFS from DESY.

If AFS is accessible on the machine when CMake is run, the necessary files will be

installed automatically; otherwise, manually copy full folder with sub-directories from
/afs/desy.de/group/telescopes/tlu/ZestSCl and /afs/desy.de/group/telescopes/tlu/tlufir
into the ./extern subfolder in your EUDAQ source directory.

3.3.3. VME driver

In order to communicate with the EUDRB boards a VME library is needed. A kernel
module is included for the Tsi148 VME bridge, for use on a Motorola MVME6100, in
the extern/Tsi148 subdirectory. Installation of this module is beyond the scope of this
document.

The vme subdirectory includes code for accessing the VME bus with the Tsil48 module.
In principle other VME bridges could be used, you just need to write a C++ class that
inherits from the VMEInterface class and implements the necessary methods (look at
the T'SI148Interface class for an example).

3.3.4. Qt

The graphical interface of EUDAQ uses the Qt graphical framework. In order to compile
the gui subdirectory, you must therefore have Qt installed. It is available in most Linux
distributions as the package qt4-devel, but make sure the version is at least 4.4, since
there are a few issues with earlier versions.

If the included version is too old, or on other platforms, it can be downloaded from
http://qt.nokia.com/downloads. Select the LGPL (free) version, then choose the
complete development environment (it may also work with just the framework, but this
is untested). Make sure the QTDIR environment variable is set to the Qt installation
directory, and the $QTDIR/bin directory is in your path.

If you are using OSX, the easiest way to install Qt is using the packages provided by the
MacPorts project (http://www.macports.org/).

3.3.5. Root

The online monitor, as well as a few command-line utilities (contained in the root
subdirectory), use the Root package for histogramming. It can be downloaded from
http://root.cern.ch or installed via your favorite package manager. Make sure Root’s
bin subdirectory is in your path, so that the root-config utility can be run. This can
be done by sourcing the thisroot.sh (or thisroot.ch for csh-like shells) script in the
bin directory of the Root installation:

source /path/to/root/bin/thisroot.sh

http://qt.nokia.com/downloads
http://www.macports.org/
http://root.cern.ch

EUDAQ User Manual 3. Installing EUDAQ

3.3.6. LCIO / EUTelescope

To enable the writing of LCIO files, or the conversion of native files to LCIO format, eudaq
must be linked against the LCIO and EUTelescope libraries. Detailed instructions on
how to install both using the ilcinstall scripts can be found at http://eutelescope.
web.cern.ch/content/installation.

The EUTELESCOPE and LCIO environment variables should be set to the installation
directories of EUTelescope and LCIO respectively. This can be done by sourcing the
build_env.sh script as follows:

source /path/to/Eutelescope/build_env.sh

3.4. Downloading the source code

The EUDAQ source code is hosted on github. The recommended way to obtain the
software is with git, since this will allow you to easily update to newer versions. The
latest version can be checked out with the following command:

git clone https://github.com/eudaqg/eudaq.git eudaq

This will create the directory eudaq, and download the latest development version into
it. If you already have a copy installed, and want to update it to the latest version, you
do not need to clone the repository again, just change to the eudaq directory use the
command:

git pull

to update your local copy with all changes commited to the central repository.
Alternatively you can also download a zip file from https://github.com/eudaq/eudaq/
archive/master.zip.

For production environments (e.g. testbeams) we strongly recommend to use the latest

release version. Use the command git tag in the repository to find the newest version
and type e.g.

git checkout tags/v01-01-00

to change to version 1.1.0.

3.5. Configuring via CMake

CMake supports out-of-source configurations and builds — just enter the ’. /build’ directory
and run CMake, i.e.

cd build
cmake ..

10

http://eutelescope.web.cern.ch/content/installation
http://eutelescope.web.cern.ch/content/installation
https://github.com/eudaq/eudaq/archive/master.zip
https://github.com/eudaq/eudaq/archive/master.zip

EUDAQ User Manual 3. Installing EUDAQ

CMake automatically searches for all required packages and verifies that all dependencies
are met using the CMakeLists.txt script in the main folder. By default, only the
central shared library, the main executables and (if Qt4 or Qt5 have been found) the
graphical user interface (GUI) are configured for compilation. You can modify this
default behavior by passing the BUILD_[name] option to CMake where [name] refers to
an optional component, e.g.

cmake -D BUILD_gui=0FF -D BUILD_tlu=0N ..

to disable the GUI but enable additionally the TLU producer and executables.

The corresponding settings are cached, so that they will be again used next time CMake
is run.

Some of the optional packages and producers include:

main: The common library, and some command-line programs that depend on only this
library

tlu: The TLU library, and the command-line programs that depend on it. Requires
libusb, ZestSC1 drivers, and the TLU firmware files.

gui: The graphical parts of the DAQ, such as the Run Control and Log Collector.
Require Qt to be installed.

onlinemon: The Root Online Monitor. Requires Root to be installed.

nreader: The native reader Marlin processor used for data conversion into LCIO by
EUTelescope. Requires LCIO and EUTelescope to be installed.

manual This manual compiled from its IfTEXsources. Requires a working KXTEXinstallation.

The producers are stored in the ./producer subdirectory and include: altro, altroUSB,
depfet, eudrb, fortis, mimoroma, mvd, pixelmanproducer, and taki. These are user-
contributed producers for specific detectors inside the EUDET telescope. They should
not be compiled unless needed.

A short description of selected producers:

producers/eudrb: The code for accessing EUDRB boards over VME. Depends on the
vime library which will be automatically built when eudrb is enabled. This should

only be compiled on an MVMEG6100 single-board computer, as it is only compatible
with the Tundra Tsi148 VME bridge, and PPC processors.

To install the binaries and the library outside the source tree, you need to set the
INSTALL_PREFIX option, e.g.
cmake -D INSTALL_PREFIX=/usr/local ..

to install the executables into the bin and the library into 1lib subdirectories of
/usr/local.

If you ever need to, you can safely remove all files from the build folder as it only contains
automatically generated files. Just run

11

EUDAQ User Manual 3. Installing EUDAQ

cd build
rm -rf *

to start from scratch.

3.6. Compilation on Linux/0SX

You should just have to run the command:

make install

from the top EUDAQ directory to compile the common library, along with some command-
line programs (the contents of the ./main/exe subdirectory). If other parts are needed,
you can specify them as arguments to the CMake command during the configuration
step.

The executable binaries and the common shared library will be installed by default
into the bin and 1lib directories in the source tree, respectively. If you would like to
install into a different location, please set the respective parameter during the CMake
configuration.

3.7. Setup and Compilation on Windows using Visual Studio

This section gives a short overview on the steps needed to compile the project under
Windows (tested under Windows 7, 32-bit). For a more detailed introduction to the
Windows build system and Visual Studio project files see the appendix B on page 67.

e Prerequisites:
— Download Qt4 or Qt5:

— Download and install the pthreads library (pre-build binary from ftp://
sources.redhat.com/pub/pthreads-win32) into either c:
pthreads-w32 or ./extern/pthreads-w32

— Download Visual Studio Express Desktop (e.g. 2013 Version): http://www.

microsoft.com/en-us/download/details.aspx?7id=40787

e Start the Visual Studio Developer Command Prompt from the Start Menu entries for
Visual Studio (Tools subfolder) which opens a cmd.exe session with the necessary
environment variables already set. If your Qt installation has not been added to the
global %PATHY, variable, you need to execute the qtenv2.bat batch file (or similar)
in the Qt folder, e.g.

C:\Qt\Qt5.1.1\5.1.1\msvc2012\bin\qtenv2.bat

Replace 75.1.1”7 with the version string of your Qt installation.

12

ftp://sources.redhat.com/pub/pthreads-win32
ftp://sources.redhat.com/pub/pthreads-win32
http://www.microsoft.com/en-us/download/details.aspx?id=40787
http://www.microsoft.com/en-us/download/details.aspx?id=40787

EUDAQ User Manual 3. Installing EUDAQ

e Now clone the EUDAQ repository (or download using GitHub) and enter the build
directory on the prompt, e.g. by entering

cd c:\Users\ [username] \Documents\GitHub\eudaq\build

e Configuration: Now enter

cmake ..

to generate the VS project files.

e Compile by calling
MSBUILD.exe EUDAQ.sln /p:Configuration=Release

or install into eudaq
bin by running

MSBUILD.exe INSTALL.vcxproj /p:Configuration=Release

e This will compile the main library and the GUI; for the remaining processors,
please check the individual documentation.

Note on “moc.exe - System Error: The program can’t start because MSVCP110.dll is
missing from your computer” errors: when using Visual Express 2013 and pthreads-w32
2.9.1, you might require “Visual C++ Redistributable for Visual Studio 2012”: download
(either x86 or x64) from http://www.microsoft.com/en-us/download/details.aspx?
1d=30679 and install.

13

http://www.microsoft.com/en-us/download/details.aspx?id=30679
http://www.microsoft.com/en-us/download/details.aspx?id=30679

EUDAQ User Manual 4. Running EUDAQ

4. Running EUDAQ

This section will describe running the DAQ system, mainly from the point of view of
the EUDET JRA1 Pixel Telescope[5] with a DUT, although most of it should also be
applicable to the DAQ in general, even without the telescope.

All executable programs from the different subdirectories are placed inside the bin
subdirectory, and should be run from here.

They should all accept a -h (or —-help) command-line parameter, which will provide a
summary of the different command-line options that can be used.

4.1. Preparation

Some preparation is needed to make sure the environment is set up correctly and the
necessary TCP ports are not blocked before the DAQ can run properly.

4.1.1. Directories

The DAQ expects two directories to exist, that it will use to store data files and log files.
They need not be real directories — they can be symbolic links to other directories if you
don’t want to store the files inside the EUDAQ installation.

First, inside the eudaq directory, there should be a directory (or symbolic link) called
data. This will contain the data files written by the Data Collector, as well as a file
containing the last run number, so that it will continue incrementing even when the DAQ
is restarted.

Secondly, there should be a directory (or symbolic link) called logs. This will be used
by the Log Collector to store log files containing all the log messages received.

4.1.2. Firewall

The different processes communicate between themselves using TCP/IP sockets. If a
firewall is running, it may block these connections, especially if the processes are running
on different computers. If all the processes will be run from the same computer, then
it is probably not necessary to do anything. If a port is blocked, you will see an error
message similar to the following when attempting to start some programs:

Are you sure the server is running? - Error 61 connecting to
localhost:44000: Connection refused

The ports used may be configured on the command line, but the default values used are:
44000 : This is the port used to send commands from the Run Control.
44001 : This port is used to send data from the producers to the Data Collector.

44002 : This port is used to send log messages from all processes to the Log Collector.

14

EUDAQ User Manual 4. Running EUDAQ

If processes will be run on different computers, then these ports should be opened up in
the firewall. The method for doing this depends on the Operating System used, and is
outside the scope of this manual.

4.1.3. Environment

When a process connects to the Run Control, it must be told what addresses to use
to connect to the Log Collector and (if it is a Producer) to the Data Collector. The
Run Control will ask the Log and Data Collectors what address to report, and these
processes therefore need a way to determine what address they are listening on. There
is no completely fool-proof way of determining this, so they look at the environment
variable $HOSTNAME.

Usually this should be the DNS name of the machine it is running on, but in some cases
it may not work correctly. If this is the case, it may be necessary to set this variable
manually, either to the real host name, or the machine’s IP address, or (if all the processes
will be run on the same computer) it can be set to localhost.

Depending on the command shell used, the command to do this should be either
“export HOSTNAME=name” (for bash-like shells) or “setenv HOSTNAME name” (for csh-like
shells), where name is the name to use.

4.1.4. TLU permissions

If you are not using a TLU, or not running on Linux, you may skip this part.

On many Linux distributions, the device node used to communicate over the USB bus is
only accessible by the user root by default.

To have the system set the correct permissions when a TLU is connected, you need to
add a udev rule: as root user, create the file /etc/udev/rules.d/54-tlu.rules and
add the following lines:

for Red Hat, e.g. SL5
SYSFS{idVendor}=="165d", SYSFS{idProduct}=="0001", GROUP="NOROOTUSB",
MODE="0666"

if you are using a Red Hat-based distribution (such as Scientific Linux) or:

for Debian
ACTION=="add", DRIVERS=="7x", ATTR{idVendor}=="1654",
ATTR{idProduct}=="0001", MODE="0666"

in case you are using a debian-based distribution such as Ubuntu.
After replugging the TLU, the device should be accessible by all users.

4.2. Processes

The DAQ system is made up of a number of different processes that may all be run on
the same, or on different computers. They are each described below.

15

EUDAQ User Manual 4. Running EUDAQ

4.2.1. Run Control

There are two versions of the Run Control — a text-based version, and a graphical version
(see Figure 2). The graphical version is preferred, since it is the most used, and therefore
the most tested and complete. The executable is called euRun.exe, or on Mac OS X
it is an application bundle called euRun.app. The text-based version can be useful for
testing, the executable is TestRunControl.exe.

eudaq Run Control

Control

Config: default L] (" Config)

Run: Start
Log: (Log 3
GeolD: 0 Stop
Status

Run Number: (1977) Events Built:

Rate: Triggers:

Mean Rate: Particles:

File Bytes: Scalers:

Connections

type ¥ name state connection
DataCollector OK 127.0.0.1:53133
LogCollector OK 127.0.0.1:53130
Producer Test OK 127.0.0.1:53135

#

Figure 2: The Run Control graphical user interface.

Normally no command-line options should be needed, but it can be told to listen on a
non-standard port, (e.g. to run two copies on the same machine), with the -a (port)
option:

./euRun. app/Contents/Mac0S/euRun -a 3000

This example is for Mac OS X, where the executable is inside an application bundle,
on other architectures it will be just euRun.exe. Note also that it is not recommended
to run two copies of the DAQ simultaneously, since it becomes difficult to keep them
completely separate as the Log and Data Collectors must also be run on different ports.

4.2.2. Log Collector

Running the Log Collector is optional. If it is run, then all log messages generated by all
other processes in the DAQ will be collected in one central location.

Like the Run Control, there are also two versions of the Log Collector. The graphical
version is called euLog.exe, or euLog.app on Mac OS X, and the text-based version is
called TestLogCollector.exe.

16

EUDAQ User Manual 4. Running EUDAQ

anon EUDAQ Log Collector

Level: From: Search:

(4-INFO [3] (Al)

Time ¥ | Level Text From File Function

17:05:55.740 4-INFO Connection from LogCollector (127.0.0.1:53132) LogCollector eulog.hh:85
17:06:20.962 4-INFO Connection from DataCollector (127.0.0.1:53134) LogCollector eulog.hh:95
17:09:07.541 4-INFO Connection from Producer.Test (127.0.0.1:53136) LogCollector eulog.hh:95
17:09:07.546 4-INFO Connection from Producer.Test (127.0.0.1:53137) DataCollector DataCollector... OnConnect{const ...

Figure 3: The Log Collector graphical user interface.

If it is being run on the same machine as the Run Control, it should not need any
command-line options. However, if it is run on a different machine, it must be told on
which machine the Run Control is running, using the -r (hostname) option, e.g.:

./eulog.exe -r eudetmac001l.cern.ch

It may also be told to listen on a non-standard port, using the -a (port) option, similar
to the Run Control.

4.2.3. Data Collector

The Data Collector is the process that collects all the raw data from the Producers,
merges all the connected incoming streams into a single data stream, and writes it to file.
Like the Log Collector, it should be told where to connect to the Run Control if it is not
running on the same machine, and it may also be told to listen on a non-standard port,
with the -r and -a options respectively, for example:

./TestDataCollector.exe -r eudet -a tcp://55001

It is also possible to run multiple Data Collector instances within one EUDAQ session.
This can be useful to reduce network traffic and e.g. write the output of one producer
to a locally attached disk. When running several Data Collectors simultaneously, Run
Controls assigns a Producer to a Data Collector by name: if the name of a Data Collector
matches that of a Producer, the latter will be given the address and port of the former.
There can be only one instance of an unnamed Data Collector which serves as the default
for any non-matching Producer; if no unnamed Data Collector is present, the first one
connecting will serve as the default.

The name of a Data Collector can be set with the -n option, for example:

./TestDataCollector.exe -n myproducer

Should you wish to run several instances of the Data Collector on one machine, you need
to make sure that they listen to different addresses using the -a option as described
above. Furthermore, you need to make each Data Collector write to a different file by

17

EUDAQ User Manual 4. Running EUDAQ

including the FilePattern option in the corresponding section of your configuration file
(also see section 4.3.3):

[DataCollector.myproducer]
FilePattern = "../data/run$6R_myproducer$X"

4.2.4. TestProducer

For testing purposes, you may use the Test Producer. This works similarly to a real
producer, but does not talk to any real hardware, instead providing a menu for the user
to manually send events (or see the ExampleProducer, below).

4.2.5. ExampleProducer

The ExampleProducer was written to illustrate the writing of a new Producer (see
section 5). However, it will actually generate some example data, and so can also be used
for testing purposes. It works more like a real Producer than the TestProducer, in that
it does not require user intervention to generate each trigger, and the data generated
emulates a simple (but realistic) sensor, and can be properly converted, and therefore
displayed in the Monitor.

4.2.6. TLUProducer

If you do not have a TLU in your setup, you may skip this part. Otherwise you should
run a TLUProducer, which will configure the TLU, and read out the timestamps and
send them to the Data Collector.

On the computer with the TLU connected, start the TLUProducer .exe program. If this
is not the same machine as the Run Control, use the —-r option as for the Data and Log
Collectors. For example:

./TLUProducer.exe -r eudet.unige.ch:3000

If the TLUProducer fails to start, make sure the permissions are set up correctly (see
subsubsection 4.1.4).

4.2.7. EUDRBProducer

The EUDRB boards are used to read out the telescope sensors. The EUDRB Producer
is designed to run on a Motorola MVMEG100 single board computer, using the Tundra
TSI148 VME bridge for communication with the EUDRBs.

If more than one EUDRBProducer is to be run, they must all have different names. The
name can be set with the -n (name) option.

As with the other processes, the address of the Run Control should be set with the -r
option. An example is shown below:

./EUDRBProducer.exe -n EUDRB2 -r 192.168.1.1

18

EUDAQ User Manual 4. Running EUDAQ

4.2.8. Other Producer(s)

If you have a producer for your own hardware (see section 5), it should also have an
option to set the address of the Run Control.

4.2.9. OnlineMon

The OnlineMon reads the data file written by the Data Collector, and generates several
Root histograms that can be useful for online monitoring. Since it reads the native data
file directly, it must be run on the same machine as the Data Collector.

EUDAQ Online-Monitor v1.2.0+beta~30-g0fad6ef

Hx% @6 @ [14

[Mmosas
(= Conalaionz
By
oAz 1in
R MMOE25 1in Y
- M M2 2 in K
M MOE26 2 in ¥
N OS2 3 in X
i osaes 2in Y
M MOE26 4in X
- M MOESAEG din ¥
M MO 5 in X
AN MOEARE B in ¥
[[MMosast 1
- MMosaes 2
- MMosaze 3
- MMOSae5 4
[Z3Moritr Parfrmanca
[EvDaeMenior

| IDLE [run:a | Curr avent 1801 | Anlyad avant: 1700 A

Figure 4: The OnlineMon showing correlation plots between different Mimosa26 planes
of the EUDET telescope.

The OnlineMon can be run in one of two modes: online or offline. In online mode, it
connects to the RunControl, so it will know when new runs are started, and it will
automatically open each new data file as it is created. In offline mode, there is no
RunControl, and it only analyses the data file it is given on the command line. An
example command line is:

./OnlineMon.exe -f 5432

This will run it in offline mode, opening the file corresponding to run 5432 (alternatively,
the full path to a file may be given). To run it in online mode, simply omit the -f option,

19

EUDAQ User Manual 4. Running EUDAQ

then the -r option may be used if the RunControl is running on a different computer or
using a non-standard port.

4.2.10. Python Interface and Wrapper for Core EUDAQ Components

A Python interface is provided for selected EUDAQ components: RunControl, DataCol-
lector and a Producer, that can be extended on the Python side. The interface is realized
through the ctypes package that is part of every standard Python installation and
requires the numpy Python package to be installed. The interface code for all components
is located in the main/python directory.

To use the interface and access the components as Python objects, the wrapper must be
loaded inside your Python script:

#!/usr/bin/env python2
execfile('PyEUDAQWrapper.py') # load ctypes wrapper

prc = PyRunControl() # start run control with default settings
wait for more than one active connection to appear
while prc.NumConnections < 2:

sleep(1)
prc.Configure("ExampleConfig") # load configuration file
while not prc.All0k:

sleep(1) # sleep while waiting for all connected producers
prc.StartRun()

This little scripts creates a RunControl instance, sends a configuration to all connected
producers, waits for their reply, and starts a new run. Several more extensive examples
for using Python with EUDAQ are located in the python directory in the main EUDAQ
directory.

4.3. Running the DAQ

To start the DAQ), all the necessary processes must be started in the correct order. The
first process must be the Run Control, since all other processes will attempt to connect
to it when they start up. Then it is recommended to start the Log Collector, since any
log messages it receives may be useful to help with debugging in case everything does not
start as expected. Next, the Data Collector should be started. Finally all the Producers,
and if needed, the RootMonitor.

4.3.1. STARTRUN

The STARTRUN file, in the main eudaq directory (as opposed to the bin subdirectory where
the executables exist), is a shell script that can be customized to load the appropriate
processes for running the DAQ. This allows you to start all the processes necessary with a
single command. If starting processes on other computers via SSH, it is recommended to
set up SSH keys so that the processes may be started without having to type a password.

20

EUDAQ User Manual 4. Running EUDAQ

In the future the STARTRUN script may be replaced with a more intelligent version that
uses a configuration file generated by the config script to decide what to load.

4.3.2. Controlling the DAQ

Once all the processes have been started, the DAQ can be configured, and runs may be
started and stopped using the Run Control (see Figure 2).

First the appropriate configuration should be selected from the drop-down list (see
subsubsection 4.3.3 for creating and editing configurations), and the GeoID should be
verified (see subsubsection 4.3.4), before continuing.

Then the Config button can be pressed, which will send a configuration command (with
the contents of the selected configuration file) to all connected processes. The full contents
of the configuration file will also be stored in the beginning-of-run-event (BORE) of the
data file, so that this information is always available along with the data.

Once all connected processes are fully configured, a run may be started, by pressing
the Start button. Whatever text is in the corresponding text box when the button is
pressed will be stored as a comment in the data file. This can be used to help identify
the different runs later.

Once a run is completed, it may be stopped by pressing the Stop button. Runs will also
stop and restart automatically when the data file reaches a threshold in size (by default
this is 1 GB). This is because there is a file size limit of 2 GB for storage on the GRID,
and the processed files can grow bigger than the original native files. The threshold size
for restarting a run may be configured in the config file (see subsubsection 4.3.3).

At any point a message may be sent to the log file by filling in the Log text box and
pressing the corresponding button. The text should appear in the LogCollector window,
and will be stored in the log file for later access.

Once the run is stopped, the system may be reconfigured with a different configuration,
or another run may be started.

4.3.3. Config Files

The Config drop-down in the Run Control is populated from the files in the config
subdirectory. These are just text files in a specific format, containing name-value pairs
separated into different sections. See subsection A.1 for an example file.

Any text from a # character until the end of the line is treated as a comment, and
ignored. Each section in the config file is delimited by a name in square brackets (e.g.
[RunControl]). The name represents the type of process to which it applies; if there
are several such processes, then they can be differentiated by including the name after
a period (e.g. [Producer.Example]). Within each section, any number of parameters
may be specified, in the form Name = Value. It is then up to the individual processes
how these parameters are interpreted.

The entire contents of the config file will be sent to all processes during the configuration,
and each process will have the appropriate section selected. The file will also be attached

21

EUDAQ User Manual 4. Running EUDAQ

to the BORE;, so that it is available with the data later, even if the original config file is
modified or deleted.

4.3.4. GeolD

The GeolD is a number representing the physical positioning of the telescope and DUT(s).
Each time a change is made to the telescope layout, this number should be incremented.
To change the number, double-click on it, and a window will appear with the new value.
By default it will increment the old value by one, so normally you should just click 0K,
but if necessary you may edit the value first.

The GeolD is inserted into the config file when it is sent, so it is also stored in the data
file, and will be used to select the correct GEAR file for alignment during the data
analysis stage.

4.4. Other Utilities

There are a number of other utilities available that are not needed for running the DAQ),
but can be useful for other tasks such as debugging. The executables are all located in
the bin subdirectory. They should all accept a help (-h or --help) option, to print a
summary of the available options.

4.4.1. TLUControl

The TLUControl.exe program is a standalone program for running the TLU without
using the full DAQ. The most commonly used parameters are shown below. For each
option, the short (preceeded by one dash) and the long (preceeded by two dashes) option
names are shown (only one of the two forms should be used for each option, but long and
short options can be mixed together on the command line), along with any parameters
and their default value that will be used if the option is not specified.

-d --dutmask (mask = 0): The DUT mask; this defines which DUT connections are
activated. It is a bit-mask, so 1 means connector 0, 2 means connector 1, etc..

-a --andmask (mask = 255): The AND mask; this defines which external trigger inputs
are activated. It is a bit-mask, so 1 means channel 0, 2 means channel 1, etc.. The
specified channels are ANDed together, and used to generate a trigger signal.

-t --trigger (msecs = 0): Internal trigger period. If non-zero, the TLU will generate
internal triggers with the specified period in milliseconds. If set to zero, the internal
trigger is off.

-i --dutinputs (values = ""): Input mode select. A sequence of comma-separated
strings specifying which connectors to use for the DUT inputs. Valid values are
RJ45, LEMO, HDMI, and NONE.

22

EUDAQ User Manual 4. Running EUDAQ

-u --wait-for-user: Pause the program after the TLU is configured, before starting
triggers. The default is to not wait for the user.

Other parameters available are as follows:

-0 —-ormask (mask = 0): The OR mask; this defines which external trigger inputs are
activated. It is a bit-mask, so 1 means channel 0, 2 means channel 1, etc.. The
specified channels are ORed together, and used to generate a trigger signal.

-v —-vetomask (mask = 0): The VETO mask; this defines which external trigger inputs
are activated. It is a bit-mask, so 1 means channel 0, 2 means channel 1, etc.. The
specified channels are used to veto the generation of a trigger if they are active.

-w --wait (ms = 1000): Wait time. This is the time to wait between updates.
-n --notimestamp: Indicates that the timestamp buffer should not be read out.
-q --quit: Quit the program after configuring the TLU.

-s --save-file (filename = ""): The filename to save trigger numbers and timestamps

-p —-strobeperiod (cycles = 1000): Period for timing strobe (in TLU clock cycles).

-1 --strobelength (cycles
clock cycles).

100) : Length of ‘on’ time for timing strobe (in TLU

-b --dutveto (mask = 0): Mask for enabling veto of triggers (‘backpressure’) by rasing
DUT_CLK.

-hm --handshakemode (nohandshake = 0): In this mode the TLU issues a fixed-length
pulse on the trigger line (0 = no handshake).

-pw --powervctrl (mV = 800): [obsolete but provided for backward compatibility,
please use -pv] Sets the Ventl control voltage to all PMTs. The range of val-
ues is between 0 and 1000 (or 0 and 2000 if the TLU has been modified by cutting
LC1 and jumpering LO1 on the PMT Supply Daughterboard and specifying the —pm
1 option).

-pv --pmtventl (mV = 800): Sets the Ventl control voltage to all PMTs (see option
-pw for more details). Will override the value of —pw if it is specified. If neither -pw

or -pv is specified, the default value will be used (and can be overridden on an
individual PMT basis).

-pl —-pmtventll (mV): Sets the PMT Ventl voltage for PMT1 (Chan 0) only. If not
specified, the default or values specified by -pw or -pv (which will override -pw) is
used.

23

EUDAQ User Manual 4. Running EUDAQ

-p2 --pmtventl2 (mV): Sets the PMT Ventl voltage for PMT2 (Chan 1) only. If not
specified, the default or values specified by -pw or —-pv (which will override -pw) is
used.

-p3 --pmtventl3 (mV): Sets the PMT Ventl voltage for PMT3 (Chan 2) only. If not
specified, the default or values specified by -pw or —-pv (which will override -pw) is
used.

-p4 —-pmtventl4d (mV): Sets the PMT Ventl voltage for PMT4 (Chan 3) only. If not
specified, the default or values specified by -pw or —-pv (which will override -pw) is
used.

-pm --pmtvcntlmod (value = 0): Specifies whether the TLU PMT Supply Daughter-
card is modified (LC1 cut and LO1 jumpered) or not. A (value) of 0 specifies that
it is unmodified (and thus the Ventl range is from OmV to 1000mV), and a (value)
of 1 specifies that the TLU is modified (and thus the Ventl range is from OmV
to 2000mV). This feature is to accomodate newer Hamamatsu PMT models (e.g.
H10721) that require a control voltage range of, for instance, 500mV to 1100mV
that are being used in place of the older (discontinued, but what the TLU was
designed to accomodate and control) models that required a control voltage of
between 250mV and 900mV.

-f —-bitfile (filename = ""): The bitfile containing the TLU firmware to be loaded.

-e --error-handler (value = 2): Error handler setting. Setting to 0 indicates the
program should abort on an error. Setting it to a value greater than 0 indicates
the number of tries that should be attempted before generating an exception.

-r ——fwversion (value = 0): Specifies the firmware version to load (setting to 0
indicates the version should be chosen automatically).

-z ——trace-file (filename = ""): The filename to save a trace of all USB accesses.
Prepend a dash (‘-") to output errors only, or a plus (‘+’) for all data (including
block transfers).

An example use of the command is shown below:

./TLUControl.exe -t 200 -d 3 -i LEMO,RJ45 -u
Using options:

TLU version = 0 (auto)

Bit file name = '' (auto)

Trigger interval = 200 ms (5 Hz)

DUT Mask = 0x03 (3)

Veto Mask = 0x00 (0)
And Mask = Oxff (255)
Or Mask = 0x00 (0)

DUT inputs = LEMO,RJ45

24

EUDAQ User Manual

Strobe period = 0x0003e8 (1000)
Strobe length = 0x000064 (100)
Enable DUT Veto = 0x00 (0)

Save file = '' (none)

TLU Version = v0.2c

TLU Serial number = 0x062b (1579)
Firmware file = TLU2_Toplevel.bit
Firmware version = 65

Library version = 65

Press enter to start triggers.
TLU Started!

Status: 20,00,--,--,--,-— (0,0)
Scalers: 0, 0, 0, O

Particles: 2

Triggers: O

Entries: 0

TS errors: 0, O (redundancy, re-read)
Timestamp: 0x8d768 (579432) = 0.00150891
Time: 0.009 s, Freq: O Hz, Average: O Hz

0x27fb479 (41923705) = 0.109174, diff=41923705

, 0x7139ab9 (118725305) = 0.309174, diff=76801600
0xba780f9 (195526905) = 0.509174, diff=76801600
0x103b6739 (272328505) = 0.709174, diff=76801600
0x14cf4d79 (349130105) = 0.909174, diff=76801600
Status: 20,00,--,--,——,—— (0,1)

Scalers: 0, 0, 0, O

Particles: 7

Triggers: 5

Entries: 5

TS errors: 0, 0 (redundancy, re-read)

Timestamp: 0x1726fa48 (388430408) = 1.01152

Time: 1.023 s, Freq: 4.92913 Hz, Average: 4.88442 Hz

-

-

S wWw NN L, O

-

0x196333b9 (425931705) 1.10917, diff=76801600
0x1df719f9 (502733305) = 1.30917, diff=76801600
0x228b0039 (579534905) 1.50917, diff=76801600
0x271ee679 (656336505) = 1.70917, diff=76801600
0x2bb2ccb9 (733138105) 1.90917, diff=76801600
Status: 20,00,--,--,-—,—— (0,1)

Scalers: 0, 0, 0, O

Particles: 12

-

-

-

© 0 N O O,

-

25

4. Running EUDAQ

EUDAQ User Manual 4. Running EUDAQ

Triggers: 10

Entries: 5

TS errors: 0, 0 (redundancy, re-read)

Timestamp: 0x2e5bb708 (777762568) = 2.02538

Time: 2.037 s, Freq: 4.93259 Hz, Average: 4.90838 Hz
“CQuitting...

This sets up internal triggers at 5 Hz (200 ms period), and activates DUT inputs 0 and 1.
Input 0 is configured to use the LEMO connector, and input 1 to use the RJ45 connector.
The first part of the output just summarizes the input parameters. The next part shows
information about the version numbers of the TLU and the firmware.

It will then configure the TLU, and if the —u option is used, it will wait for the user to
press enter before continuing. The triggers are then enabled, and a summary of the status
is printed out periodically (by default every 1 second). The program can be stopped
cleanly by pressing Ctrl-C.

Each block of status output consists of:

e a list of triggers, if there were any since the last update (the first time there are
none), each showing:
— the trigger number,
— the timestamp of the trigger, in hex, decimal and converted to seconds,
— the difference since the last trigger.

e the status of the DUT connections (see below),
e the values of the scalers on the external trigger inputs,

e the number of “particles”, which means all the potential triggers (including those
that were vetoed),

e the number of triggers that actually got sent to the DUTs,

e the number of entries in the trigger buffer, this should be equal to the number of
triggers printed out at the top of the status block,

e the number of timestamp errors detected by redundancy, and by re-reading,
e the current timestamp value,

e the time since the run started, the current trigger frequency, and the average
frequency over the whole run.

In the example output this block is repeated three times, before Ctrl-C is pressed to
stop it. The status is of the DUT connections formatted as:

e two digits for each DUT connection consisting of:

— two hyphens (--) if the connection is inactive, else

— the first digit represents the inputs from the DUT; with the busy line in bit
0 and the clock line in bit 1 (note the clock input can float low or high if a
LEMO input is selected, as it is not connected),

26

EUDAQ User Manual 4. Running EUDAQ

— the second digit represents the state of the FSM, as defined in the TLU
manual[3] (0 is ready, 1 is waiting for busy high, 4 is waiting for busy low, 5
is DUT-initiated veto, and F is an error condition).

e then in parentheses:

— the veto state (software veto in bit 0, overall veto in bit 1),
— the DMA state (1 when a DMA transfer is taking place).

4.4.2. VMETest

The VMETest.exe program uses the EUDAQ VME library to perform VME accesses. It
can be useful for determining whether a VME card is responding at a particular address.
The available options are:

-b (address): The base address for the VME accesses. This value will be added to the

offsets specified in the commands to give the actual address used.

-s (bytes): Sets the window size in bytes. This is the amount of memory that is
mapped into the VME address space. Any accesses outside this range will result in
an access violation.

-a (bits): The address bus width in bits. Valid values are 16, 24, 32 or 64.
-d (bits): The data bus width in bits. Valid values are 8, 16, 32 or 64.

-m (mode): The VME access mode. Valid values are S (single accesses), B (BLT), M
(MBLT), 2 (2¢VME), E (2eSST) and T (2eSSTB).

The options set up the mode for the VME accesses. Following the options, a number of
commands can be specified to perform actual reads or writes. The commands can be any
of the following:

r{offset): Reads a value from the specified offset, and displays the value read.

R(offset), (words): Performs a block read of the specified number of words, starting
from the specified offset.

w(offset), (value): Writes the specified value to the specified offset.
W(offset), (valuel)[,(value2)...]: Performs a block write of the specified values,
starting at the specified offset.

Numerical arguments to either the options or the commands can be given either in
decimal, or in hexadecimal by prefixing them with 0x, as in C or C++. Note that the
options require a space between the option character and its argument, but the commands
must not have a space. For example:

./VMETest.exe -b 0x180000 -a 24 -d 16 w0x20,123 r0x10

This sets up a window starting at 180000 hex, in A24 address space with D16. It then
writes the value 123 to offset 32 (20 hex), and then reads the value at offset 16 (10 hex).

27

EUDAQ User Manual 4. Running EUDAQ

4.4.3. TestReader

The TestReader.exe program will read a native data file, and can display various pieces
of information from the file. Commonly used options are:

-b: Display the BORE.

o)

: Display the end-of-run-event (EORE).

-d (range): Display the specified range of event numbers.

-p: Process the displayed events and display the corresponding StandardEvents.
-u: Dump the raw data for the displayed events.

-s: Try to resynchronize events based on the TLU event number. A full description of
this option is outside the scope of this manual (but if you don’t know what it is,
you probably don’t need it).

After the options a list of one or more filenames can be given. Any filenames that consist
only of numerical digits will be interpreted according to the input pattern (by default
this is “../data/run$6R.raw’, where $6R will be replaced with the run number padded
to 6 digits). For example:

./TestReader.exe -b -e -p -d 1-10,100,1000 example.raw 5432

This will display the BORE and EORE, and the events 1 to 10, 100 and 1000, pro-
cessing them to also display the StandardEvents, from the files example.raw and
../data/run005432.raw.

4.4.4. Converter

The Converter.exe program will read a native data file, optionally select just a subset
of events from the file, and can then write it out to another file in either the same native
format, or a different format. The most commonly used options are:

-t (type): The file type to write out. The available types are listed below.
-e (range): Select the specified range of event numbers.

-s: Try to resynchronize events based on the TLU event number (see TestReader in
subsubsection 4.4.3).

The available output file types are as follows:

native: The native EUDAQ binary file format, consisting of a serialised stream of
DetectorEvents, containing the raw data read out from the hardware.

28

EUDAQ User Manual 4. Running EUDAQ

standard: Like the native format, this is also a serialised stream, but in this case
it contains StandardEvents, in which the raw data has been converted into a
standard format.

lcio: The standard LCIO file format used by the analysis software. This type is only
available if EUDAQ was compiled with LCIO support.

root: A Root file containing a TTree with the hit pixel information.
text: A simple text based format (not yet implemented).

mimoloop: A text based format mimicking the output of the mimoloop program (from
Angelo Cotta Ramusino and Lorenzo Chiarelli at INFN Ferrara).

Although this program can be used to convert a native data file into LCIO format, the
more usual (and therefore better tested) way is to use the EUTelescope converter.

4.4.5. ClusterExtractor

This program can be used to quickly extract some clusters from raw data. It is not as
sophisticated as the EUTelescope package, which should be preferred for real analysis,
but it can be useful for doing quick checks. It will read a native data file, perform a
basic clustering, and then write these clusters to one text file per sensor plane. The most
commonly used options are:

-p (pixels): The cluster size in pixels. It should be an odd number, with 1 meaning
no clustering (just pixels over threshold), 3 meaning 3x3 pixel clusters, etc.

-n (adcs): The noise level (sigma) in ADC units. This is used to scale the thresholds
in terms of the noise.

-s (thresh): The threshold for seed pixels, in terms of the noise.

-c (thresh): The threshold for the total charge of a cluster, in terms of the cumulative
noise of all the pixels in the cluster.

-w: Reports the cluster centre as the weighted average of the pixels, instead of the
position of the seed pixel.

An example use is:

./ClusterExtractor.exe -p 3 -n 3.5 -s 6 -c 10 -w 5432

This will generate a number of text files named runNNN_eutel M.txt, where NNN is the
run number, and M is the sensor plane number. The format of the output text files is as
follows:

29

EUDAQ User Manual 4. Running EUDAQ

2 2 51487659237
182 153 126
241 120 125

3 1 51489095892
111 67 346

5 1 51491334074
113 141 171

7 2 51495330212
252 240 305
95 170 189

The first line contains the event number, the number of clusters, and the TLU timestamp.
Then for each cluster there is one line, containing the x and y coordinates of the cluster
centre, and the total charge in ADC units. The cluster lines are prepended with a space
to make it easier to scan the file by eye.

4.4.6. MagicLogBook

This program is designed to extract as much information as possible from data files and
log files, in order to reconstruct a log book. Despite its name, it is in fact not magical,
so it is preferable to keep a good log book during running, rather than relying on this
program to generate it later.

The available options are listed below:

-f (fields): A list of fields to include in the output, in the form name=value, with
multiple fields separated by commas. If a predefined list is also specified these will
be appended to the list.

-s (separator): The separator to use between fields in the output. The default is a
tab character.

-h (string): A string that appears at the beginning of the header line (with the list of
field names), that can be used to differentiate it from the other lines. The default
is an empty string.

-p name: Use a predefined list of fields. Currently available values are normal and full.
-o (file): The output filename. By default the standard output is used.

The easiest method of running is to use a predefined list of fields. There are currently
two predefined lists available: normal and full. If neither of these are suitable, contact
the EUDAQ maintainer, as it may be possible to add more options.

The normal list includes:

e the run number,
e the config file name,

30

EUDAQ User Manual 4. Running EUDAQ

e the run start time,

e for the EUDRBs:

the mode,

— the sensor type,

— whether they are running unsynchronized,
— the number of boards,

— and the firmware version.

e and for the TLU:

— the internal trigger interval,
— the AND mask,

— the DUT mask,
— and the firmware version.

The full list includes all the values from the normal list, plus the number of events in
the run and the end of run time. This is because these values can only be known by
reading the whole data file to the end, which is slow, especially for large data files.

If necessary, other information is available using custom fields, although the syntax for
these is a bit complicated, since it is designed to be as flexible as possible at specifying
any information in the data file. In the future it may be redefined in order to simplify it
if possible. Therefore it is recommended to use a predefined list of fields where possible.
Custom fields are specified as a comma separated list of items in the form name=value,
with the name being what will appear on the header line of the output, and the value
specifying what exactly to extract from the file. The possible values are illustrated below,
although not exhaustively:

events®: The number of events in the run.
config: The configuration name, or:

config:section:key: The value of the key from the corresponding section in
the config (e.g. config:Producer.EUDRB:NumBoards).

bore, tlu, eudrb, eore*: Something from the BORE, the TLUEvent or EUDRBEvent
subevents of the BORE, or the EORE, respectively:

bore: .Run: The run number

bore: (name) : Otherwise, if the second part does not start with a period, the value
of the tag (name) is used (e.g. tlu:DutMask or eudrb:MODE).

log: Something from the log file (not implemented yet).

*

items marked with an asterisk require reading the whole data file, and are therefore
slow, especially when large data files are involved.

Note that the EUDRBEvent is now deprecated, having been replaced by the RawDataEvent,
but there is currently no way to specify this.

The MagicLogBook command is used as follows:

31

EUDAQ User Manual 4. Running EUDAQ

./MagicLogBook.exe -p normal ../data/*.raw

This will produce an output similar to the following:

Run Config Mode Det Start U P Trg AND DUT Tfw Efw
6371 eudet-beam 2009-07-29 07:44:39.535 1 6 0 Oxf 0x10 241
6372 eudet-beam 2009-07-29 08:03:05.079 1 6 0 Oxf 0x10 241
6373 eudet-m26test 2009-07-30 09:57:45.157 1 6 255 Oxff 0x12 241
6374 eudet-m26test 2009-07-30 10:00:45.205 1 6 255 Oxff 0x12 241
6375 eudet-m26test 2009-07-30 10:05:38.625 1 6 1 Oxff 0x12 241
6376 eudet-m26test 2009-07-30 10:10:00.107 1 6 1 Oxff 0x12 241
6379 eudet-m26test 2009-07-30 10:13:05.322 1 6 1 Oxff 0x12 241

Note that the header row has been modified slightly to fit into the page width: the U
should be UnSync, P should be Planes, Trg should be TriggerInterval, Tfw should be
TLUfw, and Efw should be EUDRBfw. The columns Mode, Det and EUDRBfw are missing
from the output due to the fact that this information is now stored in a RawDataEvent,
which is not currently accessible with this version of the program.

4.4.7. FileChecker

This is a small utility that reads raw data files and checks if all events are readable,
can be syncronised using the TLU trigger id and lists which type of subevents the file
contains.

It should be called with list of file paths or run numbers. For any argument that consist
only of numerical digits the file path is constructed by substituting $6R in the input
pattern (defaults to “../data/run$6R.raw’) with the run number padded to 6 digits.
For example:

./FileChecker.exe {6045..6050}

This would produce the following output.

run valid num_events contains errors
6045 true 13131 MUPIX4,NI,TLU
6046 true 1 MUPIX4,NI,TLU
6047 true 14674 MUPIX4,NI,TLU
6048 true 7776 MUPIX4,NI,TLU
6049 false 0 no events in the file.
6050 false -1 read error.
4.4.8. Others

Some programs that are less used (or recently added) may not be described here. If they
look interesting, you can find out more about them by running them with the help (-h
or —-help) option, or by examining the source code.

32

EUDAQ User Manual 5. Writing a Producer

5. Writing a Producer

In order to integrate a DUT fully into the DAQ), it needs its own Producer. A Producer
is both a CommandReceiver and a DataSender, meaning it receives commands from
Run Control, and it also sends events to the Data Collector. A base class is provided
that users may inherit from, to make this as easy as possible. For example code, see
subsection A.2.

5.1. Configuration

The Configuration class is a way of storing configuration information in a way that
is easily accessible, and can be saved to or loaded from a human-readable file (see
subsubsection 4.3.3), and can be sent over the network. It is defined in the following
header:

#include "eudaq/Configuration.hh"

The configuration consists of a number of sections, each of which contains a list of
name-value pairs. The values are stored as strings, but they can be converted to/from
arbitrary types. Methods are provided to load from or save to file, to set the current
section, and to set or get configuration values. An example use is shown below:

std::ifstream infile("../conf/ExampleConfig.conf");

eudaq: :Configuration config(infile, "Producer.Example");

int param = config.Get("Parameter", 0);

std::cout << "Loaded config, param = " << param << std::endl;
config.Set ("Parameter", param+1);

config.Set("OtherParam", "something");

std: :ofstream outfile("Test.conf");

config.Save(outfile);

This creates a configuration loaded from the file . . /conf/ExampleConfig. conf, selecting
the Producer .Example section. It then gets an integer parameter from the configuration
and displays it. Then it modifies the value of the parameter and sets another parameter,
before writing the configuration to the file Test.conf.

A configuration object will be received by the Producer during the configuration, as
described in subsubsection 5.2.1.

5.2. Receiving Commands

Whenever a command is received from the Run Control, a corresponding member function
of the Producer will be called by the code in the base classes. In order to react to a
command, the necessary code is simply put inside the corresponding method. The
Producer base class is declared by including the following header file:

#include "eudaq/Producer.hh"

33

EUDAQ User Manual 5. Writing a Producer

5.2.1. OnConfigure

This method is called whenever a configure command is received from the Run Control.
The method signature is:

virtual void OnConfigure(const eudaq::Configuration & config);

As a parameter, it receives the configuration chosen in the Run Control. Information
may be extracted from the configuration in order to set up the hardware.

5.2.2. OnStartRun
This is called on the start of each run. The method signature is:
virtual void OnStartRun(unsigned param) ;

As a parameter, it receives the run number of the started run. The Producer must send
a BORE, and then prepare for reading out events from the hardware.

5.2.3. OnStopRun
This is called at the end of the run. The method signature is simply:

virtual void OnStopRun();

Care should be taken that there are no more events pending to be read out. Once all
data events have been sent, an EORE should also be sent, to signal to the DAQ that the
Producer has ended the run successfully.

5.3. Sending Data and the RawDataEvent class

Events may be sent to the DAQ using the Producer’s SendEvent () method that has
the following signature:

void SendEvent(const Event &);

It takes as a parameter an object derived from the eudaq: :Event base class that will be
serialised and sent to the Data Collector. In practice it will usually be of concrete type
RawDataEvent.

The RawDataEvent is a generic container for blocks of raw bytes, used to encapsulate the
data read out from the sensor electronics and send it to the DAQ. Each RawDataEvent
may contain any number of raw data blocks. By convention each block usually corresponds
to one sensor, but this is not required; it is up to each Producer how the raw data are
encoded, since it is up to the corresponding DataConverterPlugin how they are decoded.
The RawDataEvent class is defined in the following header file:

#include "eudaq/RawDataEvent.hh"

The class is described in more detail below.

34

EUDAQ User Manual 5. Writing a Producer

5.3.1. Constructing

A RawDataEvent is constructed as follows:

RawDataEvent event ("EXAMPLE", run, event);

Where "EXAMPLE" is a string unique to the particular producer that will be used to
select the correct converter during decoding. The run and event parameters are the run
number and event number respectively.

As well as normal data events, the producer must also send a BORE and EORE at the
beginning and end of a run respectively. These are just normal RawDataEvent objects,
but with a particular flag set. The RawDataEvent has factory methods to simplify these
cases:

RawDataEvent: :BORE("EXAMPLE", run);
RawDataEvent: :EORE("EXAMPLE", run, event);

These methods return a RawDataEvent that may be either be sent directly to the DAQ),
or be modified first, e.g. by setting tags as described below in subsubsection 5.3.3.

5.3.2. Adding Data

Once a RawDataEvent has been constructed, data blocks may be added either using a
vector:

std::vector<unsigned char> buffer = ...;
event.AddBlock(id, buffer);

or using a pointer to a block of memory, and a length in bytes:

unsigned char * buffer = ...;
event.AddBlock(id, buffer, len);

Where id is an integer used to differentiate the different blocks. Usually it can just be 0
for the first block and increment by 1 for the following blocks. And buffer contains the
actual data for the block. If the buffer is a vector, the whole length is used, if it is a
pointer, then the length must be specified.

The type of the vector or pointer need not be unsigned char, since these methods are
in fact template methods that can take a vector of any basic type, but if larger types
are used, care must be taken about endianness, since the buffer will be converted to
unsigned char according to the endianness of the machine it is running on. Therefore
if the producer may run on different architectures steps should be taken to ensure that
any endianness issues are handled correctly.

5.3.3. Tags

The RawDataEvent (in fact any type that descends from the Event base class) may
also have tags set. These are name-value pairs containing extra information that does
not easily fit in the usual raw data. This is used particularly in the BORE to include

35

EUDAQ User Manual 5. Writing a Producer

information about the particular run that may be useful for the decoding later. A tag
may be set as follows:

event.SetTag("Temperature", 42);

The value corresponding to the tag can be set as an arbitrary type (in this case an
integer), it will be converted to a string internally.

5.4. Log Messages

A method is provided for sending log messages to the central Log Collector. To use it
the follwing header should be included:

#include "eudaq/Logger.hh"

This defines the following macros for sending log messages, listed in decreasing order of
severity:

EUDAQ_USER: A user-generated message (e.g. from the RunControl Log button).
EUDAQ_ERROR: Something that has gone wrong and should probably be looked into.
EUDAQ_WARN : A warning that something may not be quite right.

EUDAQ_INFO: An message generated during normal running containing information that
may be useful to the user.

EUDAQ_EXTRA: Some extra information that may be less useful in normal running.
EUDAQ_DEBUG : Information for debugging purposes that will normally be hidden.

They are used as follows:
EUDAQ_ERROR("No keyboard detected: press F1 to continue.");
The messages will be sent to the central Log Collector if it is connected, otherwise they

will be displayed on the local terminal. The log level can be changed in the following
way:

EUDAQ_LOG_LEVEL ("WARN") ;

Any messages lower than the specified level will just be ignored. This can be useful to
filter out unimportant messages and, for example, just display error messages.

5.5. Interfacing Python-Code via the PyProducer Interface

As described in section 4.2.10, a Python interface is provided for selected EUDAQ
components including a Producer. This basic implementation can be extended on the
Python-side as demonstrated by the example python/example-producer.py.

36

EUDAQ User Manual 6. Data Conversion

6. Data Conversion

Data are stored on disk, by default, in a native binary format, containing the raw data as
read out by the various Producers. It is basically the same format used for serialising the
data over the socket connection to the Data Collector. To be useful, this data must be
converted into a standardised format so that the monitoring and analysis software does
not depend on particularities of the individual sensors, but can be applied generically
to any sensor. Two different formats are used for this. The first is the StandardEvent
type, an internal class that does not depend on any external libraries, and is used by
the online monitoring, and many of the utility programs of the framework. The second
type is the LCIO standard format from the linear collider community, used by the full
analysis software.

6.1. StandardEvent and StandardPlane

The StandardEvent is a class designed to represent pixel sensor data in a reasonably easy
to use way, but still be flexible enough to store the data from a wide range of different
sensors as completely as possible. Each StandardEvent represents one event of data from
the whole telescope and any DUTs, so a run will consist of a sequence of StandardEvents.
It inherits from the Event base class, meaning that it has a run number, an event number,
an optional timestamp, and may also contain tags (see subsubsection 5.3.3). It also has
an array of StandardPlanes, each representing one sensor plane of the telescope or DUT.
Each StandardPlane contains the charge values from the pixels of one sensor, and may
contain several frames in cases where the sensor is read out multiple times per event. It
also has the concept of a “result” frame, which is calculated from the one or more of the
source frames according to different rules that may be specified with flags. The result
frame contains only one charge value per pixel, with a positive signal, and is what will be
used for the analysis. It may consist of either differences between the original frames (e.g.
in the case of correlated double sampling (CDS)), a sum of all original frames, or specific
parts of the different frames selected according to the pivot information. Flags may be
set to select which of the different methods is used. It may also contain a submatrix
number per pixel, which can be used to differentiate different parts of the sensor, so
that they may be analyzed separately later, and a pivot boolean (true or false) per pixel,
which can be used to indicate whether the pixel was sampled before or after the trigger,
and is used to determine which parts of the sensor to combine when the FLAG_NEEDCDS
flag is set.

Both the StandardEvent and the StandardPlane classes are defined in the following
header file:

#include "eudaq/StandardEvent.hh"

In general, a user should not need to construct a StandardEvent object, but should
create one or more StandardPlanes, that will be added to a given StandardEvent.

37

EUDAQ User Manual 6. Data Conversion

6.1.1. Constructor

The StandardPlane constructor has the following signature:

StandardPlane(unsigned id, const std::string & type,
const std::string & sensor = "");

Where id is an arbitrary numerical identifier for the plane that can be used to differentiate
between different planes of the same type, type is the type of the Producer that generated
the frame (should be the same as that in the Producer and the DataConverterPlugin),
and sensor is the name of the sensor, in the case that the Producer can read out more
than one type of sensor.

6.1.2. SetSizeRaw and SetSizeZS

Once a StandardPlane has been constructed, the size should be set. There are two
methods for doing this, depending on whether the data are stored in raw or zero-
suppressed mode. In raw mode all pixels are stored, whether they have a signal or not.
In zero-suppressed mode, only those with a signal above a certain threshold are stored,
along with their coordinates, and any below the threshold are suppressed.

The signature of the SetSizeRaw method is:

void SetSizeRaw(unsigned w, unsigned h, unsigned frames = 1, int flags = 0);

Where w is the full width of the sensor (in the x-direction, usually columns) in pixels, h
is the full height of the sensor (in the y-direction, usually rows) in pixels, frames is the
number of frames, and flags may be a combination of the following values, separated
by a bitwise OR (i.e. |):

FLAG_NEEDCDS : Indicates that the data are in 2 or 3 frames and that neighbouring frames
should be subtracted to produce the result.

FLAG NEGATIVE: Indicates that the charge values are negative, so should be negated to
produce the result.

FLAG_ACCUMULATE : Indicates that all frames should be summed to produce the result.

FLAG_WITHPIVOT: Indicates that pivot information is stored per pixel, and should be
used for constructing the result.

FLAG_WITHSUBMAT : Indicates that submatrix information is stored per pixel.

FLAG_DIFFCOORDS : Indicates that each frame can have different coordinates, in the case
of zero-suppressed data, otherwise all frames will share the same coordinates.

The signature of the SetSizeZS method is a follows:

void SetSizeZS(unsigned w, unsigned h, unsigned npix,
unsigned frames = 1, int flags = 0);

38

EUDAQ User Manual 6. Data Conversion

Where all parameters are the same as in SetSizeRaw, but there is an extra parameter
(npix) that specifies how many pixels to preallocate. If the number of pixels above
threshold is known, this may be used to allocate them all at once. If not, then this
parameter may be set to zero, and pixels can be allocated as needed (but note that this
way may be slower, since memory will need to be reallocated for each new pixel).

6.1.3. SetPixel and PushPixel

Once the size has been set, the values of the pixels can then be loaded into the
StandardPlane. There are two methods for doing this: SetPixel, that sets the value of
an already allocated pixel, and PushPixel that allocates space for a new pixel and sets
that.

The signatures of SetPixel are as follows:

void SetPixel(unsigned index, unsigned x, unsigned y, unsigned pix,
bool pivot = false, unsigned frame = 0);

void SetPixel(unsigned index, unsigned x, unsigned y, unsigned pix,
unsigned frame);

where index is the index of the pixel to set, x and y are the coordinates of the pixel, and
pix is the charge value for the pixel. The value of the pivot, and the frame number may
optionally be set also, if relevant. Note that if only the pivot is set, care should be taken
that it is of type bool to avoid accidentally setting the frame instead.

The signatures of PushPixel are as follows:

void PushPixel(unsigned x, unsigned y, unsigned pix,
bool pivot = false, unsigned frame = 0);

void PushPixel(unsigned x, unsigned y, unsigned pix,
unsigned frame);

where all parameters are the same as in SetPixel. The only difference being the lack of
an index parameter, since this will always be the newly allocated pixel.

6.1.4. Setting other information

Other than the pixel values, the StandardPlane also stores some other information that
should be set if applicable:

void SetTLUEvent (unsigned ev);

This sets the trigger ID as read out from the TLU. If it was read out and stored, it
should be set using this method to allow cross checks in the analysis.

void SetPivotPixel(unsigned p);

This sets the value of the pivot pixel (or pivot row etc. — the value is arbitrary). It is

only here to allow cross-checks in the analysis; if the pixels are to be combined using
the pivot information, then it should also be set in the per-pixel pivot values. The value

39

EUDAQ User Manual 6. Data Conversion

here cannot be used for that purpose since the order of reading out the pixels is not in
general known.

void SetFlags(FLAGS flags);

Some flags may be set after calling SetSizeRaw or SetSizeZS, but this is not possible
with the flags FLAG_WITHPIVOT, FLAG_WITHSUBMAT or FLAG_DIFFCOORDS since these flags
affect how memory is allocated by those methods.

6.1.5. Adding to the StandardEvent

Once the plane has been constructed and filled, it may be added to a StandardPlane
using the following method:

StandardPlane & AddPlane(const StandardPlane &) ;

This will copy the plane into the list of StandardPlanes stored by the StandardEvent.
It will return a reference to the copy of the plane, that can be used to make further
modifications if necessary.

6.1.6. Extracting information

The StandardEvent inherits the following methods from the Event base class:

unsigned GetRunNumber() const;

unsigned GetEventNumber() const;

uint64_t GetTimestamp() const;

T GetTag(const std::string & name, T def) const;

allowing access to the run number, event number, timestamp (if set) and any tags (where
T is an arbitrary type). It also has the following methods to access the StandardPlanes
that it contains:

size_t NumPlanes() const;
const StandardPlane & GetPlane(size_t i) const;

These return the number of planes stored, and a reference to a particular plane, respect-
ively. The individual planes can then be examined using the following methods:

const std::string & Type() const;
const std::string & Sensor() const;
unsigned ID() const;

unsigned TLUEvent() const;
unsigned PivotPixel() const;

These return the type of the plane (i.e. the type of Producer / DataConverter that
generated it), the type of sensor for the plane (in the case that the plane type can hold
different types of sensor data), the ID of the plane (used to differentiate different planes
of the same type), the TLU trigger ID for the plane (if it was read out and stored) and

40

EUDAQ User Manual 6. Data Conversion

the value of the pivot pixel (or pivot row) for the plane. Further information about the
plane is available in:

unsigned XSize() const;

unsigned YSize() const;

unsigned NumFrames() const;

unsigned TotalPixels() const;

unsigned HitPixels() const;

unsigned HitPixels(unsigned frame) const;

These return the full width and height of the sensor in pixels, the number of frames
stored for the plane, total number of pixels for the plane (i.e. full width x height), the
number of pixels over threshold (for zero-suppressed data) in the result frame, and the
number of pixels over threshold in a particular source frame.

Note that for the HitPixels method, there are two versions; the first takes no parameter
and returns the number of hit pixels in the result frame, while the second takes the frame
number as a parameter and returns the number of hit pixels in that frame from the
underlying source data. Normally the first version would be used, unless access is needed
to the raw data from the sensor. Similarly, the other methods for accessing the data all
have two versions:

double GetPixel(unsigned index) const;

double GetX(unsigned index) const;

double GetY(unsigned index) const;

const std::vector<pixel_t> & PixVector() const;
const std::vector<coord_t> & XVector() const;
const std::vector<coord_t> & YVector() const;

These return the charge value, the x coordinate and the y coordinate of a particular pixel
(for the first three methods), or a vector of these values for all pixels in the frame (for
the final three methods.

Here, coord_t and pixel_t are both double, even though the values stored are usually
integers. This is in order to make the StandardPlane as general as possible, allowing it
to store, for example, clusters with non-integer coordinates instead of pixels, and it also
makes it easier to pass the values directly into Root histograms without first having to
convert them to double. All the above methods also have a version taking the frame
number (as the second parameter if they already have one parameter), which returns the
information from the underlying source frame instead of the result frame.

6.2. LCIO and LCEvent

Due to time constraints, the LCIO format is not yet described in this manual. If you
need to write a converter to LCIO, first check whether a newer version of this manual is
available, otherwise you can look at the other converters that are already implemented,
and if that is not enough, seek the help of an expert.

41

EUDAQ User Manual 6. Data Conversion

6.3. DataConverterPlugin

In order to allow different DUTSs to easily incorporate their data into the monitoring
and analysis chain, the DataConverterPlugin system was developed. This allows all the
conversion code for each producer to be kept in one file, with the necessary parts being
called automatically as needed. This section describes how to write a new converter
plugin, to use existing converter plugins see subsection 7.3.

Writing a converter plugin for a new producer involves defining a new class that derives
from the DataConverterPlugin base class and implementing a few methods. Each
converter plugin contains a unique string that defines which type of RawDataEvents it
is able to convert. This is the same string that is set in the RawDataEvent when it is
created by the relevant producer. The DataConverterPlugin class is defined in the
following header:

#include "eudaq/DataConverterPlugin.hh"

The methods to be implemented are described below, and a full example is provided in
subsection A.3.

6.3.1. Constructor

The constructor should call the DataConverterPlugin constructor, and pass as a para-
meter the string representing the type of RawDataEvent this plugin can convert. A single
static instance of the converter should then be defined, and instantiated in the source
file. This is illustrated below:

class ExampleConverterPlugin : public eudaq::DataConverterPlugin {
ExampleConverterPlugin() : eudaq::DataConverterPlugin("EXAMPLE") {
// constructor. ..
b
// more methods. ..
static ExampleConverterPlugin m_instance;
};

ExampleConverterPlugin ExampleConverterPlugin::m_instance;

this will cause the constructor to be called during initialization of the program, and the
DataConverterPlugin constructor will automatically register the plugin and make it
available in the PluginManager.

6.3.2. Initialization

Every time a new run is started, the Initialize method will be called. It has the
following signature:

virtual void Initialize(const Event & ev, const Configuration & c);

42

EUDAQ User Manual 6. Data Conversion

It receives as parameters the BORE, and the configuration used for the run. The plugin
may extract any tags from the BORE, or other information from the configuration, and
store it in member variables for use during decoding.

6.3.3. GetTriggerlD

Since each producer that reads out the trigger ID from the TLU stores it differently in
the raw data, there is no general way to extract this information. The GetTriggerID
method remedies this, by providing a generic interface to access the trigger ID. The
signature is as follows:

virtual unsigned GetTriggerID(const Event & ev) const;

It receives the Event as a parameter, from which it should extract the TLU trigger 1D,
and return it as an unsigned integer.

6.3.4. GetStandardEvent

This method should extract the sensor data from the RawDataEvent input parameter,
and fill in the StandardEvent by adding the appropriate number of StandardPlanes
(one per sensor plane). The method signature is:

virtual bool GetStandardSubEvent(StandardEvent & out,

const Event & in) const;

It should return true if it successfully updated the StandardEvent, or false to indicate
an error.

6.3.5. GetLCIOEvent

Similar to GetStandardEvent, the GetLCIOEvent method converts a RawDataEvent into
a standardized format, in this case LCIO. The signature is:

virtual lcio::LCEvent * GetLCIOEvent(const Event * ev) const;

It receives the RawDataEvent as a parameter, and should return a pointer to a new
LCEvent if the conversion is successful. In the event of an error, it should return a null
pointer.

43

EUDAQ User Manual 7. Other Parts of the Framework

7. Other Parts of the Framework

The EUDAQ framework contains a number of other parts that may be useful. Those
that have not already been described in previous sections will be outlined below.

7.1. FileWriter

The FileWriter part of the framework allows different file formats to be written, using a
common interface, using a plugin-like system to define new file types. The FileWriter
class defines the interface that each type must implement, and the FileWriterFactory
allows code that writes data files to select any available file type, and write it in a generic
way, without needing to know details about the particular file format. A number of
different file types are already implemented, for a list with descriptions, see page 28
The easiest way to make use of the different FileWriters, is to use the Converter.exe
program (see subsubsection 4.4.4).

The FileWriter base class is defined in the following header:

#include "eudaq/FileWriter.hh"

In order to implement a new FileWriter, a new class must be written, inheriting from
the FileWriter base class, and implementing the following methods:

virtual void StartRun(unsigned);
virtual void WriteEvent(const DetectorEvent &) ;
virtual uint64_t FileBytes() const;

The StartRun method is called at the start of each new run with the run number as
a parameter. This allows a new file to be opened, and any header information to be
written if necessary. Then the WriteEvent method is called for each event to be written.
Here the DetectorEvent can be decoded and processed and the necessary data written
to file. The FileBytes method should return the number of bytes written to the file.
However, it is optional, and may simply return zero if the actual size is not easily known.

7.2. FileReader

Although tools are provided to access the information in the native data files, and
to convert them to other formats (such as LCIO, for analysis with the EUTelescope
package), in some cases it may be preferable to access the native data directly. For this,
the FileReader class is provided, allowing a custom program to be written to access a
native file and process it as desired.

The constructor takes as an argument the name of the file to be opened, and will read
the first event from the file (which should be the BORE). The NextEvent () method can
then be called to advance through the file. It can optionally take as a parameter the
number of events to skip, and will return true as long as a new event was read. The
currently loaded event can be accessed with the GetDetectorEvent () method.

44

EUDAQ User Manual 7. Other Parts of the Framework

The basic usage is shown below, while a more complete example is available in subsec-
tion A.4:

#include "eudag/FileReader.hh"
#include <iostream>

int main(int argc, char ** argv) {
if (argec '= 2) {

std::cerr << "usage: " << argv[0] << " file" << std::endl;
return 1;

}

eudaq: :FileReader reader(argv[1]);

std::cout << "Opened file: " << reader.Filename() << std::endl;

std::cout << "BORE:\n" << reader.GetDetectorEvent() << std::endl;
while (reader.NextEvent()) {
std::cout << reader.GetDetectorEvent() << std::endl;

}
return 0;

}

This will open the file specified on the command line, and print out a summary of all the
events in there. Be aware that running it as it is may generate a large amount of output,
especially with large data files.

7.3. PluginManager

The PluginManager handles the different DataConverterPlugins, allowing raw data
stored in a RawDataEvent to be easily converted to a StandardEvent or LCEvent without
having to know the details of all the detector types in there. It is defined in the following
header:

#include "eudaq/PluginManager.hh"

In order to convert the events correctly, the plugins must have access to the information
in the BORE. Therefore, before any events may be converted, and for each data file, the
PluginManager must be initialized as follows:

eudaq: :PluginManager: : Initialize(bore) ;
The PluginManager will take care of passing the relevant parts of the BORE to the

appropriate DataConverterPlugins. The DetectorEvents can then be converted as
follows:

eudaq: :StandardEvent sev = eudaq::PluginManager: :ConvertToStandard(dev) ;

The PluginManager will take care of splitting the DetectorEvent into its constituent
subevents, and passing them all to the appropriate DataConverterPlugins to be in-
serted into the returned StandardEvent. For a slightly more complete example of the
PluginManager, see the ExampleReader in subsection A.4.

45

EUDAQ User Manual 7. Other Parts of the Framework

7.4. OptionParser

The OptionParser is used to simplify parsing of command-line options. It provides a
way to specify which arguments a program accepts, with the types, default values and
descriptions, so that the help text can be automatically generated, and therefore is always
in sync with the code, and all command line programs can have a uniform interface.
All programs using the OptionParser will automatically provide a -h (and --help)
option to display the help text, as well as a -v (and --version) option to display the
program version, unless the program explicitly overrides these options with other ones
with the same names.

The OptionParser is the class that handles the actual parsing of the command line. The
signature of the constructor is as follows:

OptionParser(const std::string & name, const std::string & version,
const std::string & desc="", int minargs = -1, int maxargs = -1);

The first three arguments are the program name, version and (optionally) description,
and these are optionally followed by two numbers specifying the number of arguments
expected after the command line options. The default value of -1 for the minimum means
no arguments are allowed, and for the maximum means that an arbitrary number may
be given (i.e. there is no explicit maximum).

If the automatically generated help text is not sufficient, extra text may also be given to
display at the end of the help text, by passing it to the following method:

void OptionParser: :ExtraHelpText(const std::string & text);

This can be used to provide extra information about the options to the program.

Once an OptionParser object has been constructed, the different options may be specified.
There are two types: OptionFlag, which specifies a simple option with no argument,
and the template Option<T>, which specifies an option taking an argument of type T.
The OptionFlag constructor has the following signature:

OptionFlag(OptionParser & op, const std::string & shortname,
const std::string & longname, const std::string & desc = "");

where op is a reference to the OptionParser object created previously, that will do the
actual parsing of the command line. It then takes two names: a short version (usually
a single character) that is used with a single hyphen, and a long version that must be
preceded by two hyphens on the command line. Finally, a description may be given that
will be displayed in the help text.

The Option constructor has the following two signatures, one for normal types, the other
for vectors of another type:

Option<T>(OptionParser & op, const std::string & shortname,
const std::string & longname, const T & deflt = T(),
const std::string & argname = "", const std::string & desc = "");
Option<std::vector<T> >(OptionParser & op, const std::string & shortname,
const std::string & longname, const std::string & argname = "",

46

EUDAQ User Manual 7. Other Parts of the Framework

const std::string & sep = "", const std::string & desc = "");

where, in both cases, the first three arguments are as for OptionFlag. The first constructor
then takes a default value that will be used in the case the option is not specified on
the command line, a name for the argument to the option (to be used in the help text),
and a description of the option. The vector version also takes an argument name and a
description, but no default value (the default is always an empty vector), instead it takes
a separator, which is the string used to separate multiple elements of the vector on the
command line. By default (or if an empty string is specified), a comma will be used.
Once all the options have been specified, the command line can be parsed, which is done
by calling the following method of the OptionParser object:

OptionParser & OptionParser::Parse(const char ** args);

as an argument it takes the list of arguments from the command line (by convention
usually called argv). If there is an error during parsing, an exception may be thrown;
this should be handled by the HandleMainException method as described below.
Afterwards the values of the options can be accessed using their Value () method. The
IsSet () method is also available to tell whether an option has been set on the command
line (for OptionFlags this will hold the same value as the Value () method).

Finally, the OptionParser has a HandleMainException method that provides a way to
catch any unhandled exceptions, and either display help if it is a problem with parsing
the command line, or otherwise display a standard text informing the user of a problem.
It will also catch exceptions of type MessageException and display the message, without
treating it as an error, so this can be used to exit the program with a message to the
user. It is recommended to put the main program inside a try block, then call the
HandleMainException method from a catch(...) block, after any other exceptions
have been handled (if necessary).

An example use is shown below, illustrating most of what is described above:

#include "eudag/OptionParser.hh"
#include "eudaq/Utils.hh"
#include <iostream>

int main(int /*argcx/, char ** argv) {

eudaq: :OptionParser op("Example", "1.0", "An example program", 0);
eudaq: :OptionFlag test(op, "t", "test", "Enable test");
eudaq: :Option<double> example(op, "e", "example", 3.14, "value",
"Example parameter");
eudaq: :Option<std::vector<int> > another(op, "a", "another", "values", ";",

"Example vector");
op.ExtraHelpText ("Some more information about this");

try {
op.Parse(argv) ;
std::cout << "Test: " << (test.IsSet() ? "Enabled\n" : "Disabled\n")
<< "Example: " << example.Value() << "\n"

47

EUDAQ User Manual 7. Other Parts of the Framework

<< "Another: " << eudaq::to_string(another.Value(), ", ")
<< std::endl;
if (op.NumArgs() == 0) {
throw(eudaq: :MessageException("No arguments were given"));
}
for (unsigned i = 0; i < op.NumArgs(); ++i) {
std::cout << "Argument " << (i+1) << ": " << op.GetArg(i) << std::endl;
}
} catch(...) {
return op.HandleMainException();
}

return 0;

}

Running this program produces the following output:

./OptionExample.exe -h
Example version 1.0
An example program

usage: ./OptionExample.exe [options] [0 or more arguments]
options:

-t —-test
Enable test

-e —-example <value> (default = 42)
Example parameter
-a -—another <values> (default =)

Example vector
Some more information about this program.

./OptionExample.exe
Test: Disabled

Example: 42

Another:

No arguments were given

./OptionExample.exe -t -e 2.718 -a 1;2;3 foo bar
Test: Enabled

Example: 2.718

Another: 1, 2, 3

Argument 1: foo

Argument 2: bar

48

EUDAQ User Manual 7. Other Parts of the Framework

7.5. Timer

The Timer class wraps the underlying operating system’s timer functions, making them
easier to use in a platform independent way. Whenever a Timer object is created, it will
record the current time. Then at any time in the future, the elapsed time in seconds
may be accesses with the Seconds () method.

There is also a Stop() method to stop the timer counting, so any subsequent calls to
Seconds will return the same value, and a Restart () method to reset the timer’s start
time to the current time and start counting again. An example use is shown below:

#include "eudaq/Timer.hh"

Timer t;
function_a();
cout << "Function A took " << t.Seconds() << " seconds." << endl;
t.Restart();
function_b();
cout << "Function B took " << t.Seconds() << " seconds." << endl;
// wait 3 microseconds
t.Restart();
while (t.Seconds() < 3e-6) {
// do nothing
}

This shows a timer being used to measure the execution time of two functions, and to
wait for a small delay. Usually to wait for a delay, it is preferable to use sleep (or mSleep,
see subsubsection 7.6.4), but in most operating systems the minimum delay for a sleep
is around 20 ms (even when using usleep which has microsecond resolution) so if the
delay must be shorter, a busy loop like above is needed.

7.6. Utils

The Utils package is a collection of useful functions and classes too small to merit their
own individual files. It is used by including the header:

#include "eudaq/Utils.hh"

Some of the most useful parts are described here.

7.6.1. to_string

This is a template function that takes (almost) any type and returns the value converted
to a string. An optional second argument specifies the minimum number of digits to use
(padding with zeroes if necessary).

int value = 123;
strfunction(to_string(value));
strfunction(to_string(value, 6));

49

EUDAQ User Manual 7. Other Parts of the Framework

This will pass first the string "123", and then the string "000123" to the function
strfunction.

7.6.2. from _string

This template function is the inverse of to_string. It takes as arguments a string and a
default value of type T, and returns an object of type T initialised from the string. If it
is not possible to convert the string to the required type, the default value is returned
instead.

std::string value = "456";
intfunction(from_string(value, 0));

This will call intfunction with the integer value 456.

7.6.3. hexdec

This is a class to facilitate printing numbers in both hexadecimal and decimal. It is
used similarly to to_string, but when printed, it will display the value in hexadecimal,
followed by the value in decimal in parentheses. The hexadecimal values will be padded
to the full width of the type, unless a second argument is given specifying the minimum
number of hex digits to display.

short value = 789;
cout << hexdec(value) << endl
<< hexdec(value, 0) << endl;

This will display:
0x0315 (789)
0x315 (789)

If the result is required in a string, instead of being printed, this can be achieved with
to_string(hexdec(value)).

7.6.4. mSleep

This is a wrapper around the operating system’s sleep/usleep (or equivalent) function.
It takes as an argument the number of milliseconds to sleep. The advantage of this
function is that it will work on Linux, Mac OS X and Windows, as it will automatically
call the correct underlying function.

50

EUDAQ User Manual 8. Reporting Issues

8. Reporting Issues

The github server, on which EUDAQ is hosted, provides a system for reporting bugs
and for requesting new features. It is accessible at the following address: https:
//github.com/eudaq/eudaq/issues.

Here you may submit new reports (you are required to register first to do this), or follow
the status of existing bugs and feature requests. This is recommended over (or at least, as
well as) sending an email to the developers, as it ensures a record of the issue is available,
and others may follow the progress.

o1

https://github.com/eudaq/eudaq/issues
https://github.com/eudaq/eudaq/issues

EUDAQ User Manual 9. Developing and Contributing to EUDAQ

9. Developing and Contributing to EUDAQ

9.1. Regression Testing

If a CMake version later than 2.8.0 is found and Python is installed together with the
numpy package, several regression tests are made available that can be executed through
CTest. The tests are based on the Python wrapper around EUDAQ components as
described in section 4.2.10. Run the tests by typing

cd build
cmake ..
ctest

This starts the script etc/tests/run_dummydataproduction.py which runs a short
DAQ session with instances of RunControl, DataCollector and a (dummy) Producer and
compares the output to a reference file stored on AFS at DESY. If your system is set up
correctly, you have access to the reference file, and the basic components of the EUDAQ
library work, all tests should pass. To see the output of failing tests, you can add the
--output-on-failure parameter to the CTest command.

These basic tests can easily be extended to test other parts of the core framework or of
your own producer. Take a look at the etc/tests/testing.cmake CMake script and
the central CMakeLists.txt file where it is included for an example of how to set up
tests with CTest.

The automated nightly tests are defined in CMake scripts located in etc/tests/nightly
and are executed by the scripts run nightly.sh and run nightly.bat for Unix and
Windows platforms, respectively. In addition to the dummy run described above, the
nightly tests check out all changes from the central repository, build the full code base,
and submit all results to the CDash webserver hosted at DESY: http://aidasoft.desy.
de/CDash/index.php?project=EUDAQ

9.2. Commiting Code to the Main Repository
If you would like to contribute your code back into the main repository, please follow the

“fork & pull request” strategy:

e Create a user account on github, log in

e “Fork” the (main) project on github (using the button on the page of the main
repo)

e Kither: clone from the newly forked project and add 'upstream’ repository to local
clone (change user names in URLs accordingly):

git clone https://github.com/hperrey/eudaq eudaq
cd eudaq
git remote add upstream https://github.com/eudaq/eudaq.git

92

http://aidasoft.desy.de/CDash/index.php?project=EUDAQ
http://aidasoft.desy.de/CDash/index.php?project=EUDAQ

EUDAQ User Manual 9. Developing and Contributing to EUDAQ

e or if edits were made to a previous checkout of upstream: rename origin to upstream,
add fork as new origin:

cd eudaq

git remote rename origin upstream

git remote add origin https://github.com/hperrey/eudaq
git remote -v show

e Optional: edit away on your local clone! But keep in sync with the development in
the upstream repository by running

git fetch upstream # download named heads or tags
git pull upstream master # merge changes into your branch

on a regular basis. Replace master by the appropriate branch if you work on a
separate one. Don’t forget that you can refer to issues in the main repository
anytime by using the string eudaq/eudag#XX in your commit messages, where XX
stands for the issue number, e.g.

[...]. this addresses issue eudaq/eudag#1

e Push the edits to origin (our fork)

git push origin

(defaults to git push origin master where origin is the repo and master the
branch)

e Verify that your changes made it to your github fork and then click there on the
“compare & pull request” button

e Summarize your changes and click on “send”

e Thank youl!

33

EUDAQ User Manual A. Source Code

A. Source Code

This section contains example code to illustrate the concepts in the manual, when they
are too long to be included in the main section.

All files are also present in the EUDAQ distribution; so if possible those versions should be
used, since they may be more up to date than the manual.

A.1. Example Config File

Latest version available at:
https://github.com/eudaq/eudaq/blob/master/conf/ExampleConfig. conf

This is an example config file, you can adapt it to your needs.
All text following a # character is treated as comments

[RunControl]
RunSizeLimit = 1000000000

[DataCollector]
FilePattern = "../data/run$6R$X"

[LogCollector]
SaveLevel = EXTRA
PrintLevel = INFO

[Producer.Example]
Parameter = 123
Ski =1

[Producer.TLU]
AndMask = Oxf

OrMask = 0
VetoMask = 0
DutMask = 20

TriggerInterval = 0
TrigRollover = 0
#DUTInput3=LEMO

o4

https://github.com/eudaq/eudaq/blob/master/conf/ExampleConfig.conf

EUDAQ User Manual A. Source Code

A.2. Example Producer

Latest version available at:
https://github.com/eudaqg/eudaqg/blob/master/main/exe/src/ExampleProducer . cxx

#include "eudaq/Configuration.hh"
#include "eudaq/Producer.hh"
#include "eudag/Logger.hh"
#include "eudag/RawDataEvent.hh"
#include "eudaq/Timer.hh"
#include "eudaq/Utils.hh"
#include "eudaq/OptionParser.hh"
#include "eudaq/ExampleHardware.hh"
#include <iostream>

#include <ostream>

#include <vector>

// A name to identify the raw data format of the events generated
// Modify this to something appropriate for your producer.
static const std::string EVENT_TYPE = "Hexagon";

// Declare a new class that inherits from eudaq::Producer
class ExampleProducer : public eudaq::Producer {
public:

// The constructor must call the eudaq::Producer constructor with the name

// and the runcontrol connection string, and initialize any member <
variables.

ExampleProducer(const std::string & name, const std::string & runcontrol)

: eudaq: :Producer (name, runcontrol),
m_run(0), m_ev(0), stopping(false), done(false),started(0) {3}

// This gets called whenever the DAQ is configured
virtual void OnConfigure(const eudaq::Configuration & config) {

std::cout << "Configuring: " << config.Name() << std::endl;

// Do any configuration of the hardware here

// Configuration file values are accessible as config.Get(name, default)

m_exampleparam = config.Get ("Parameter", 0);

m_ski = config.Get("Ski", 0);

std::cout << "Example Parameter = " << m_exampleparam << std::endl;
std::cout << "Example SKI Parameter = " << m_ski << std::endl;

hardware.Setup (m_exampleparam) ;
hardware.Setup(m_ski) ;

95

https://github.com/eudaq/eudaq/blob/master/main/exe/src/ExampleProducer.cxx

46

61
62
63
64
65
66
67

68

L,

T = W N =

-~

oC

b B S A B B B BN B |

Ne)

EUDAQ User Manual A. Source Code

// At the end, set the status that will be displayed in the Run Control.
SetStatus(eudaq: :Status::LVL_OK, "Configured (" + config.Name() + ")");
}

// This gets called whenever a new run is started
// It receives the new run number as a parameter
virtual void OnStartRun(unsigned param) {

m_run = param;

m_ev = 0;

std::cout << "Start Run: " << m_run << std::endl;

// It must send a BORE to the Data Collector

eudaq: :RawDataEvent bore(eudaq::RawDataEvent: :BORE(EVENT_TYPE, m_run));
// You can set tags on the BORE that will be saved in the data file

// and can be used later to help decoding

bore.SetTag("EXAMPLE", eudaq::to_string(m_exampleparam));

// Send the event to the Data Collector

SendEvent (bore) ;

// At the end, set the status that will be displayed in the Run Control.
SetStatus(eudaq: :Status::LVL_0K, "Running");
started=true;

// This gets called whenever a run is stopped

virtual void OnStopRun() {
std::cout << "Stopping Run" << std::endl;

started=false;
// Set a flag to signal to the polling loop that the run is over
stopping = true;

// wait until all events have been read out from the hardware
while (stopping) {

eudaq: :mSleep(20);
}

// Send an EORE after all the real events have been sent
// You can also set tags on it (as with the BORE) if necessary
SendEvent (eudaq: :RawDataEvent: :EORE("Test", m_run, ++m_ev));

// This gets called when the Run Control is terminating,
// we should also exit.
virtual void OnTerminate() {

std::cout << "Terminating..." << std::endl;

56

EUDAQ User Manual A. Source Code

88 done = true;

89 }

90

91 // This is just an example, adapt it to your hardware

92 void ReadoutLoop() {

93 // Loop until Run Control tells us to terminate

94 while (!done) {

95 if ('hardware.EventsPending()) {

96 // No events are pending, so check if the run is stopping

97 if (stopping) {

98 // if so, signal that there are no events left

99 stopping = false;

100 b

101 // Now sleep for a bit, to prevent chewing up all the CPU

102 eudaq: :mSleep(20);

103 // Then restart the loop

104 continue;

105 b

106 if (!started)

107 {

108 // Now sleep for a bit, to prevent chewing up all the CPU

109 eudaq: :mSleep(20);

110 // Then restart the loop

111 continue;

112 }

113 // If we get here, there must be data to read out

114 // Create a RawDataEvent to contain the event data to be sent

115 eudaq: :RawDataEvent ev(EVENT_TYPE, m_run, m_ev);

116

117 for (unsigned plane = 0; plane < hardware.NumSensors(); ++plane) {

118 // Read out a block of raw data from the hardware

119 std: :vector<unsigned char> buffer = hardware.ReadSensor(plane);

120 // Each data block has an ID that is used for ordering the planes <
later

[}

// If there are multiple sensors, they should be numbered <«
incrementally

// Add the block of raw data to the event
ev.AddBlock(plane, buffer);

}

hardware.CompletedEvent () ;

// Send the event to the Data Collector

SendEvent (ev) ;

// Now increment the event number

m_ev++;

Ol B~ W N

S © 00 N O

W W NN NN N NN

= e e e e e e e e e

[

o7

EUDAQ User Manual A. Source Code

W N
(-

private:
// This is just a dummy class representing the hardware
// It here basically that the example code will compile
// but it also generates example raw data to help illustrate the decoder
eudaq: :ExampleHardware hardware;

~

L W W W W W W
S :

(00

139 unsigned m_run, m_ev, m_exampleparam;
140 unsigned m_ski;

141 bool stopping, done,started;

142 };

143

144 // The main function that will create a Producer instance and run it
145 int main(int /*argc*/, const char ** argv) {
146 // You can use the OptionParser to get command-line arguments

147 // then they will automatically be described in the help (-h) option
148 eudaq: :OptionParser op("EUDAQ Example Producer", "1.0",

149 "Just an example, modify it to suit your own needs");

150 eudaq: :Option<std::string> rctrl(op, "r", "runcontrol",

151 "tcp://localhost:44000", "address",

152 "The address of the RunControl.");

153 eudaq: :Option<std::string> level(op, "l1", "log-level", "NONE", "level",
154 "The minimum level for displaying log messages locally");

155 eudaq: :Option<std::string> name (op, "n", "name", "Example", "string",
156 "The name of this Producer");

157 try {

158 // This will look through the command-line arguments and set the options
159 op.Parse(argv);

160 // Set the Log level for displaying messages based on command-line
161 EUDAQ_LOG_LEVEL (level.Value());

162 // Create a producer

163 ExampleProducer producer(name.Value(), rctrl.Value());

164 // And set it running...

165 producer.ReadoutLoop() ;

166 // When the readout loop terminates, it is time to go

167 std::cout << "Quitting" << std::endl;

168 ¥ catch (...) {

169 // This does some basic error handling of common exceptions
170 return op.HandleMainException();

171 }

172 return O0;

173}

28

EUDAQ User Manual A. Source Code

A.3. Example DataConverterPlugin

Latest version available at:
https://github. com/eudaq/eudaq/blob/master/main/1ib/plugins/ExampleConverterPlugin. cc

#include "eudaq/DataConverterPlugin.hh"
#include "eudag/StandardEvent.hh"
#include "eudaq/Utils.hh"

#include "eudag/Logger.hh"

=~ W N =

ot

// All LCIO-specific parts are put in conditional compilation blocks
// so that the other parts may still be used if LCIO is not available.
#if USE_LCIO

9 #include "IMPL/LCEventImpl.h"

10 #include "IMPL/TrackerRawDataImpl.h"

11 #include "IMPL/LCCollectionVec.h"

|2 #include "lcio.h"

13 #endif

14

15 namespace eudaq {

16

17 // The event type for which this converter plugin will be registered
18 // Modify this to match your actual event type (from the Producer)
static const char *EVENT_TYPE = "Hexagon";

o =

o O

// Declare a new class that inherits from DataConverterPlugin
class ExampleConverterPlugin : public DataConverterPlugin {

W N

=~

public:

3

// This is called once at the beginning of each run.
// You may extract information from the BORE and/or configuration
// and store it in member variables to use during the decoding later.

~

Qo

virtual void Initialize(const Event &bore, const Configuration &cnf) {
m_exampleparam = bore.GetTag("EXAMPLE", 0);
#ifndef WIN32 // some linux Stuff //$$change
(void)cnf; // just to suppress a warning about unused parameter cnf

#endif
}

T = W N =

// This should return the trigger ID (as provided by the TLU)
// if it was read out, otherwise it can either return (unsigned)-1,

=

-~

// or be left undefined as there is already a default version.
virtual unsigned GetTriggerID(const Event &ev) const {
static const unsigned TRIGGER_OFFSET = 8;
// Make sure the event is of class RawDataEvent
if (const RawDataEvent *rev = dynamic_cast<const RawDataEvent *>(&ev)) {
// This is just an example, modified it to suit your raw data format

AR R G0 W W W W W W W W W RN NN NN NN NN
oS O ™ : S

N =

29

https://github.com/eudaq/eudaq/blob/master/main/lib/plugins/ExampleConverterPlugin.cc

59
60
61
62
63
64
65
66

67

=~ W N =

00 =1 =1 ~J =7 =7 =1 =] ~J -] =J
S © w3 S

oo
—_

82

83
84
85
86

87

EUDAQ User Manual A. Source Code

// Make sure we have at least one block of data, and it is large enough
if (rev->NumBlocks() > 0 &&
rev->GetBlock(0) .size() >= (TRIGGER_OFFSET + sizeof (short))) {
// Read a little-endian unsigned short from offset TRIGGER_OFFSET
return getlittleendian<unsigned short>(
&rev->GetBlock(0) [TRIGGER_OFFSET]) ;
X
b
// If we are unable to extract the Trigger ID, signal with (unsigned)-1
return (unsigned)-1;

}

// Here, the data from the RawDataEvent is extracted into a StandardEvent.
// The return value indicates whether the conversion was successful.
// Again, this is just an example, adapted it for the actual data layout.
virtual bool GetStandardSubEvent(StandardEvent &sev,
const Event &ev) const {

// If the event type is used for different sensors

// they can be differentiated here

std::string sensortype = "Hexa";

const RawDataEvent * rev = dynamic_cast<const RawDataEvent *> (&ev);

//rev->Print(std: :cout);

unsigned nPlanes = rev->NumBlocks();
std: :cout<<"Number of Raw Data Blocks (=Planes): "<<nPlanes<<std::endl;

for (unsigned pl=0; pl<nPlanes; pl++){
std::cout<<"Plane = "<<pl<<" Raw GetID = "<<rev->GetID(pl)<<std::endl;
const RawDataEvent::data_t & bl = rev->GetBlock(pl);
std: :cout<<"size of block: "<<bl.size()<<std::endl;
// TODD -—----—-—-———- >>>>
// Investigate this method instead of memcpy stuf
//const std::vector <unsigned char> & data=dynamic_cast<const <
std: :vector<unsigned char> &> (ev_raw.GetBlock(i));
[/ <<LLLL= mmmmmmmeem
std::vector<unsigned short> data;

data.resize(bl.size() / sizeof(short));
std: :memcpy (&data[0], &bl[0], bl.size());

60

EUDAQ User Manual A. Source Code

if (bl.size()<8){
EUDAQ_ERROR("This data must be corrupt. Block size=" +
to_string(bl.size()));

int nROCs = datal[0];
int nPixels = datal[1];
int trigID = datal[2];
int nHits = datal[3];

std::cout<<" Size of data = "<<data.size()<<" trig ID:"<<trigID
<<" nHits = "<<nHits<<" (If zero: it's non-ZS data!) \n"
<<" nROCs = "<<nROCs <<" mnPixels = "<<nPixels<<std::endl;
//for (size_t d=0; d<data.size();d++){
//if (d<10)
// std::cout<<d<<" data value: "<<data[d]<<std::endl;
//%}

// Create a StandardPlane representing one sensor plane
StandardPlane plane(2*pl+1l, EVENT_TYPE, sensortype);

if (nHits == 0){
std::cout<<"This is non-ZS data plane: "<<pl<<std::endl;
// Let's make sure that the size of data is right:
if (bl.size() !'= nROCs*nPixels*2 + 8)
EUDAQ_ERROR("This is no good. The numbers for non-ZS data don't match!
block size=" + to_string(bl.size()));

// Set the number of pixels and frames in this plane
plane.SetSizeRaw(nROCs, nPixels, 3);

//std::cout<<"Plane type = "<<plane.Type()<<std::endl;
//std::cout<<"Plane sensor = "<<plane.Sensor()<<std::endl;

int ind=0;
for (unsigned roc = 0; roc < nROCs; ++roc) {
for (unsigned px = 0; px < nPixels; ++px) {

unsigned charge = datal4+roc+px*nR0OCs] ;
//for (unsigned fr=0; fr < 3; fr++)
plane.SetPixel(ind, roc, px, 0.2b5*charge, false, 0);
plane.SetPixel(ind, roc, px, charge, false, 1);
plane.SetPixel(ind, roc, px, 0.10*charge, false, 2);

//if (abs(roc-2)+abs(px-42)<5)

61

EUDAQ User Manual A. Source Code

132 //std: :cout<<ind<<" roc="<<roc<<" px="<<px<<" charge: <
""<<charge<<std::endl;

ot =~ W

13

13 ind++;

13! }

136 }

137

138 }

139

140 else {

141 std::cout<<"This is Zero Suppressed data plane: "<<pl

142 <<" nHits = "<<nHits<<" (If zero: it's non-ZS data!) \n"<<std::endl;

143 // Need special plane constructor etc

144

145 if (data.size() !'= 3*nHits+4)

146 EUDAQ_ERROR("This is no good. The numbers for ZS data don't match! <
Data size=" + to_string(bl.size()));

147

148 // Set ZS size of the plane

149 plane.SetSizeZS(nROCs, nPixels, nHits, 3);

150

151 //for (size_t n = 0; n < data.size(); n++)

152 //std::cout<<" data at "<<n<<" is: "<<data[n]<<std::endl;

153

154 int ind = 0;

155 for (size_t hit = 4; hit < data.size()-4; hit+=3) {

156

157 unsigned short roc = datalhit];

158 unsigned short px = datalhit+1];

159 unsigned short charge = datalhit+2];

160

161 //std: :cout<<" roc="<<roc<<" px="<<px<<" charge: "<<charge<<std::endl;

162

163 plane.SetPixel(ind, roc, px, 0.25%charge, false, 0);

164 plane.SetPixel(ind, roc, px, charge, false, 1);

165 plane.SetPixel(ind, roc, px, 0.10*charge, false, 2);

166

167 // APZ: for some reason push methods give an error with more than one <~
frame:

168 //plane.PushPixel (roc, px, 0.25xcharge, false, 0);

169 //plane.PushPixel (roc, px, charge, false, 1);

170 //plane.PushPixel (roc, px, 0.10*charge, false, 2);

171

172 //if (abs(roc-2)+abs(px-42)<5)

173 //std: :cout<<" roc="<<roc<<" px="<<px<<" charge: "<<charge<<std::endl;

174

62

EUDAQ User Manual A. Source Code

if (roc==0 && px==0){
EUDAQ_THROW("Zero-zero pixel. This should not hapen. Charge = "+ <
to_string(charge)) ;
std::cout<<"\n \t ** Zero Pixel problem:"<<std::endl;
std: :cout<<hit<<" roc="<<roc<<" px="<<px<<L" charge: <~
""<<charge<<std::endl;

// Set the trigger ID
plane.SetTLUEvent (GetTriggerID(ev));
// Add the plane to the StandardEvent

sev.AddPlane(plane) ;

}
//std::cout<<"St Ev NumPlanes: "<<sev.NumPlanes()<<std::endl;

// Indicate that data was successfully converted
return true;

#if USE_LCIO
// This is where the conversion to LCIO is done
virtual lcio::LCEvent *GetLCIOEvent(const Event * /*ev*/) const {
return 0;
}
#endif

private:
// The constructor can be private, only one static instance is created
// The DataConverterPlugin constructor must be passed the event type
// in order to register this converter for the corresponding conversions
// Member variables should also be initialized to default values here.
ExampleConverterPlugin()
: DataConverterPlugin(EVENT_TYPE), m_exampleparam(0) {}

// Information extracted in Initialize() can be stored here:
unsigned m_exampleparam;

63

EUDAQ User Manual A. Source Code

// The single instance of this converter plugin
static ExampleConverterPlugin m_instance;
}; // class ExampleConverterPlugin

// Instantiate the converter plugin instance
ExampleConverterPlugin ExampleConverterPlugin::m_instance;

} // namespace eudaq

64

=~ W N =

)

o0 =

10

26

EUDAQ User Manual A. Source Code

A.4. Example Reader

Latest version available at:
https://github.com/eudaq/eudaq/blob/master/main/exe/src/ExampleReader . cxx

#include "eudaq/FileReader.hh"
#include "eudag/PluginManager.hh"
#include "eudaq/OptionParser.hh"
#include <iostream>

static const std::string EVENT_TYPE = "Hexagon";

int main(int /*argcx*/, const char ** argv) {
// You can use the OptionParser to get command-line arguments
// then they will automatically be described in the help (-h) option
eudaq: :OptionParser op("EUDAQ Example File Reader", "1.0",
"Just an example, modify it to suit your own needs",
1),
eudaq: :OptionFlag doraw(op, "r", "raw", "Display raw data from events");
eudaq: :OptionFlag docon(op, "c", "converted", "Display converted events");
try {
// This will look through the command-line arguments and set the options
op.Parse(argv) ;

// Loop over all filenames
for (size_t i = 0; i < op.NumArgs(); ++i) {

// Create a reader for this file
eudaq: :FileReader reader(op.GetArg(i));

// Display the actual filename (argument could have been a run number)
std::cout << "Opened file: " << reader.Filename() << std::endl;

// The BORE is now accessible in reader.GetDetectorEvent ()

if (docon.IsSet()) {
// The PluginManager should be initialized with the BORE
eudaq: :PluginManager: : Initialize(reader.GetDetectorEvent());

}

// Now loop over all events in the file
while (reader.NextEvent()) {
if (reader.GetDetectorEvent().IsSEORE()) {
std::cout << "End of run detected" << std::endl;
// Don't try to process if it is an EORE
break;

}

65

https://github.com/eudaq/eudaq/blob/master/main/exe/src/ExampleReader.cxx

EUDAQ User Manual A. Source Code

if (doraw.IsSet()) {
// Display summary of raw event
//std::cout << reader.GetDetectorEvent() << std::endl;

try {
// Look for a specific RawDataEvent, will throw an exception if
not found
const eudaq::RawDataEvent & rev =
reader.GetDetectorEvent () .GetRawSubEvent (EVENT_TYPE) ;
// Display summary of the Example RawDataEvent
std::cout << rev << std::endl;
} catch (const eudaq::Exception &) {
std::cout << "No " << EVENT_TYPE << " subevent in event "
<< reader.GetDetectorEvent () .GetEventNumber ()
<< std::endl;

if (docon.IsSet()) {
// Convert the RawDataEvent into a StandardEvent
eudaq: :StandardEvent sev =
eudaq: :PluginManager: : ConvertToStandard(reader.GetDetectorEvent ()) ;

// Display summary of converted event
std::cout << sev << std::endl;
}
3
b

} catch (...) {
// This does some basic error handling of common exceptions
return op.HandleMainException();

b

return O;

}

66

EUDAQ User ManuaB. Introduction to the build system and project files on Windows

B. Introduction to the build system and project files on
Windows

B.1. MSBUILD

This is the program that processes the project (solution) files and feeds it to the compiler
and linker. If you have a working project file it is more or less straight forward. It has a
very simple syntax:

MSBUILD.exe MyApp.sln /t:Rebuild /p:Configuration=Release

myApp.sln is the file you want to Process. The parameter /target (short /t) tells
msbuild what to do in this case rebuild. You have all the options you need like: clean,
build and rebuild. You can also specify your own targets. With the “parameter property”
switch you can change the properties of your Project. Let’s say you want to compile
EUDAQ), you go in the build folder where the solution (sln) file is and type:

MSBUILD.exe EUDAQ.sln /p:Configuration=Release

One thing one has to keep in mind is that there are some default configurations. The
default is a debug build for x86. If you want to have it different then you need to specify
it in the command line. And one thing you want to have is a release build! With the /p
switch you can overwrite properties like in this case the configuration. But you could
also overwrite the compiler version it should use. Let’s say you want to use VS 2013 then
you have to specify it by writing:

MSBUILD.exe EUDAQ.sln /p:PlatformToolset=v120 /p:Configuration=Release

But be careful when changing the compiler settings. It is possible that some then link
against an incompatible version of your external libraries.

B.2. Project Files

Project files are the Visual Studio equivalent to Makefiles. The Project files have a very
easy syntax but a complicated mechanism behind it. Making changes to an existing file
is very easy. Writing a new one from scratch is expert level. But also, in most cases,
pointless because CMake does it for you. Therefore usually one gets a finished Project
file that was auto created by CMake and one just wants to make some minor changes to
it, therefore it is enough to know where one can tweak around.

Please remember to adjust the CMake files when you are done accordingly, so that your
changes are reproduced and not overwritten on the next CMake run.

Let’s start easy and assume you want to change the output directory. You can do this
by adding the following line to the corresponding Property group.

<PropertyGroup
Condition=""3$(Configuration) |$(Platform)'=='Release |Win32' ">
<OutDir>..\ ..\ Windows Binaries\</OutDir>

67

EUDAQ User ManuaB. Introduction to the build system and project files on Windows

</PropertyGroup>

Or let’s say you want to change the compiler version. You can do this by changing the
platform toolset to the version you need. You can find this option in

<PropertyGroup
Condition=""$(Configuration) |$(Platform)'=='Debug| Win32'”
Label="Configuration”>

<PlatformToolset>v110</PlatformToolset>
</PropertyGroup>

V110 stands for Visual Studio 2012. V120 stands for VS 2013 and so on. The next
interesting switches are in here:

<ItemDefinitionGroup Condition=""3$(Configuration) |$(Platform)'=='Debug| Win32'">
<ClCompile>
<PrecompiledHeader>< /PrecompiledHeader>
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>
WIN32;

DEBUG;

_CONSOLE;

%(PreprocessorDefinitions)
</PreprocessorDefinitions>
<AdditionallncludeDirectories>

..\ ..\main\include;

..\..\ extern\pthread—win32\include;

- \..\ tlu\include;

-\ ..\ extern\ZestSC1\windows 7\Inc;
..\..\ extern\libusb—win32—bin —1.2.6.0\ include
</AdditionallncludeDirectories>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<GenerateDebuglnformation>true</GenerateDebuglnformation>
<AdditionalLibraryDirectories>
- \..\ extern\libusb—win32-bin—1.2.6.0\ lib\msvc\;
.\ ..\ extern\ZestSC1\windows 7\1ib\x86\
</AdditionalLibraryDirectories>
<AdditionalDependencies>
ZestSC1.1ib;libusb.lib;kernel32.1lib;user32.1ib;gdi32.1ib ;winspool.lib ;comdlg32.lib;
advapi32.lib;shell32.1ib;o0le32.1ib;oleaut32.1ib;uuid.lib;odbc32.1ib;
odbeep32.1ib;%(AdditionalDependencies)
</AdditionalDependencies>
</Link>
</ItemDefinitionGroup>

An Item definition Group is the place where you define your items. One can compare
Items to a struct in C++; it is an object that contains different types of information.
The Condition statement works like an IF in C4++.

68

EUDAQ User ManuaB. Introduction to the build system and project files on Windows

In this article you can find all the possibilities you have: http://msdn.microsoft.
com/de-de/library/7szfhaft.aspx In the next line you are defining an item called
“CLCompile” and you give it the some attributes like “PreprocessorDefinitions” or
“AdditionallncludeDirectories”. This Object contains all the information that gets sent
to the compiler. That means all the compiler flags are set here. The actual files are
included later in the project file. So for now you have only defined how you want to
compile your files but not what files you want to compile. AdditionallncludeDirectories
does exactly what you think it does. It understands all relative paths and path with
environment variables exactly as it should. Next thing is “PreprocessorDefinitions”. It
also works exactly as you think it does. That means you can either define just names for
your #ifdef statements in the code or you can define macros like

<PreprocessorDefinitions>
SOMEVAILUE=3;
WIN32;
DEBUG;
_CONSOLE;
%(PreprocessorDefinitions)
</PreprocessorDefinitions>

Then you can call in your code SOMEVALUE and it will be 3. T do not know if it is
possible to define macro function like

#define x_square(x) x*x.

<AdditionalDependencies>
$ (myFancyLibPath) \ x.1ib ;
odbeep32.1ib;%(AdditionalDependencies)
</AdditionalDependencies>

And it will link against all *.1ib files in this directory.

Next thing you need to know is where to put your files you want to compile. Some-
where below the ItemDefinitionGroup there is an ItemGroup which contains the Include
statements. It looks like this:

<ItemGroup>
<ClCompile Include="src\someFile.cc” />
<ClCompile Include="src\someOtherFile.cc” />

<ClCompile Include="src*.cpp” />

</ItemGroup>

Here you can either put individual files or groups of files in. But be careful that you
don’t include the same file twice. There is also an ItemGroup which contains the include
files. This one seems to be more important for the IDE of VS so that it shows the header
files in the Solution Explorer.

69

http://msdn.microsoft.com/de-de/library/7szfhaft.aspx
http://msdn.microsoft.com/de-de/library/7szfhaft.aspx

EUDAQ User ManuaB. Introduction to the build system and project files on Windows

A typical use case is that you wrote your own Data Converter Plugin. This file needs to
be mentioned here!

What you won'’t find in the project file is the section that passes the files to the compiler.
This part is hidden behind the following import statement:

<Import Project="3%(VCTargetsPath)\Microsoft.Cpp. targets” />

It is usually not required to modify this file. But if you want to view it you can find it in
this folder:

C:\Program Files (x86)\MSBuild\Microsoft.Cpp\v4.0\

This file is written neither to be very clear nor understandable, so better check out the
documentation pages such as:
http://msdn.microsoft.com/en-us/library/dd293626.aspx

B.3. Known Problems

e The environment variables are pulled in as properties therefore they can be over-
written in the project file or in the “vexproj.user” file. So if for example your
QT Project won’t compile and keeps complaining about not finding the correct
directory make sure you are not overwriting the QTDIR environment Variable with
a Property.

70

http://msdn.microsoft.com/en-us/library/dd293626.aspx

EUDAQ User Manual C. Online Monitor Configuration Settings

C. Online Monitor Configuration Settings

C.1. Configuration Sections Overview

we have the following Section Keywords, to be put in [].

e [General]

[Correlations]

[Clusterizer]

[HotPixelFinder]

[Mimosa26]

C.2. Configuration options in [General]

SnapShotDir string
Stores the location of snapshots from the online monitor

SnapShotFormat string
Which Format to use for the snapshots, e.g. 7.pdf”

C.3. Configuration options in [Correlations]

MinClusterSize int
Which minimum cluster size to use for the correlation plots

DisablePlanes int,int,int
List of planes to disbale, separates by a ”,”
C.4. Configuration options in [Clusterizer]

C.5. Configuration options in [HotPixelFinder]

HotPixelCut float
Cut above which a pixel is considered ”hot”

C.6. Configuration options in [Mimosa26]

Mimosa26_max_sections int
Number of section of the Mimosa 26 chip, default is 4

Mimosa26_section_boundary int
Number of pixels in a Mimosa26 section, default is 288

71

EUDAQ User Manual C. Online Monitor Configuration Settings

C.7. Configuration Example

[Generall]

SnapShotDir = "/scratch/eudet/EUDAQ/bin/"
SnapShotFormat = ".pdf"

[Correlations]

MinClusterSize = 2
DisablePlanes = 2,3

[Clusterizer]

[HotPixelFinder]
HotPixelCut = 0.05

[Mimosa26]

Mimosa26_max_sections = 4
Mimosa26_section_boundary = 288

72

EUDAQ User Manual Glossary

Glossary

BORE beginning-of-run-event, basically a run header.

CDS correlated double sampling, when two frames are acquired, one before and one
after the trigger, and then subtracted to get the actual signal.

DUT device under test.

EORE end-of-run-event, basically a run trailer.

EUDRB the EUDET data reduction board, a VME readout board for pixel sensors.

LCIO Linear Collider 1/O, the file format used by the analysis software.

TLU trigger logic unit.

Acknowledgements

This work is supported by the Commission of the European Communities under the 6"
Framework Programme “Structuring the European Research Area,” contract number
RII3-026126.

The research leading to these results has received funding from the European Commission
under the FP7 Research Infrastructures project AIDA, grant agreement no. 262025. The
support is gratefully acknowledged. Disclaimer: The information herein only reflects
the views of its authors and not those of the European Commission and no warranty
expressed or implied is made with regard to such information or its use.

References

[1] P. Roloff, “The EUDET high resolution pixel telescope”, Nucl. Instrum. Meth., A604,
(2009), 265-268.

[2] A. Bulgheroni, “EUTelescope, the JRA1 tracking and reconstruction software: a
status report”, EUDET-Memo-2008-48.
URL http://www.eudet.org/e26/e28/e615/e835/eudet-memo-2008-48. pdf

[3] D. G. Cussans, “Description of the JRA1 Trigger Logic Unit (TLU), v0.2¢”, EUDET-
Memo-2009-04.
URL http://www.eudet.org/e26/e28/e42441/e57298/EUDET-MEM0-2009-04 . pdf

[4] A. Cotta Ramusino, “The EUDET Data Reduction Board (EUDRB)”, EUDET-
Memo-2008-38.
URL http://www.eudet.org/e26/e28/e615/e814/eudet-memo-2008-38. pdf

[5] EUDET JRA1 Group, “EUDET Pixel Telescope Data Taking Manual - Updated
Version 20097, EUDET-Memo-2009-03.
URL http://www.eudet.org/e26/e28/e42441/e67493/EUDET-MEM0-2009-03. pdf

73

http://www.eudet.org/e26/e28/e615/e835/eudet-memo-2008-48.pdf
http://www.eudet.org/e26/e28/e42441/e57298/EUDET-MEMO-2009-04.pdf
http://www.eudet.org/e26/e28/e615/e814/eudet-memo-2008-38.pdf
http://www.eudet.org/e26/e28/e42441/e67493/EUDET-MEMO-2009-03.pdf

	License
	Introduction
	Architecture
	Directory Structure

	Installing EUDAQ
	Overview
	CMake
	C++11 compliant compiler
	Downloading the source code
	Configuring via CMake
	Compilation on Linux/OSX
	Setup and Compilation on Windows using Visual Studio

	Running EUDAQ
	Preparation
	Processes
	Running the DAQ
	Other Utilities

	Writing a Producer
	Configuration
	Receiving Commands
	Sending Data and the RawDataEvent class
	Log Messages
	Interfacing Python-Code via the PyProducer Interface

	Data Conversion
	StandardEvent and StandardPlane
	LCIO and LCEvent
	DataConverterPlugin

	Other Parts of the Framework
	FileWriter
	FileReader
	PluginManager
	OptionParser
	Timer
	Utils

	Reporting Issues
	Developing and Contributing to EUDAQ
	Regression Testing
	Commiting Code to the Main Repository

	Source Code
	Example Config File
	Example Producer
	Example DataConverterPlugin
	Example Reader

	Introduction to the build system and project files on Windows
	MSBUILD
	Project Files
	Known Problems

	Online Monitor Configuration Settings
	Configuration Sections Overview
	Configuration options in [General]
	Configuration options in [Correlations]
	Configuration options in [Clusterizer]
	Configuration options in [HotPixelFinder]
	Configuration options in [Mimosa26]
	Configuration Example

	Glossary

